Skip to main content

Advertisement

Log in

Ecological implications of parasites in natural Daphnia populations

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In natural host populations, parasitism is considered to be omnipresent and to play an important role in shaping host life history and population dynamics. Here, we study parasitism in natural populations of the zooplankton host Daphnia magna investigating their individual and population level effects during a 2-year field study. Our results revealed a rich and highly prevalent community of parasites, with eight endoparasite species (four microsporidia, one amoeba, two bacteria and one nematode) and six epibionts (belonging to five different taxa: Chlorophyta, Bacillariophyceae, Ciliata, Fungi and Rotifera). Several of the endoparasites were associated with a severe overall fecundity reduction of the hosts, while such effects were not seen for epibionts. In particular, infections by Pasteuria ramosa, White Fat Cell Disease and Flabelliforma magnivora were strongly associated with a reduction in overall D. magna fecundity. Across the sampling period, average population fecundity of D. magna was negatively associated with overall infection intensity and total endoparasite richness. Population density of D. magna was negatively correlated to overall endoparasite prevalence and positively correlated with epibiont richness. Finally, the reduction in host fecundity caused by different parasite species was negatively correlated to both parasite prevalence and the length of the time period during which the parasite persisted in the host population. Consistent with epidemiological models, these results indicate that parasite mediated host damages influence the population dynamics of both hosts and parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen YC, DeStasio BT, Ramcharan CW (1993) Individual and population level consequences of an algal epibiont on Daphnia. Limnol Oceanogr 38:592–601

    Article  Google Scholar 

  • Anderson RM (1982) Population dynamics of infectious diseases: theory and applications. Chapman and Hall, London

    Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Barea-Arco J, Pérez-Martinez C, Morales-Baquero R (2001) Evidence of a mutualistic relationship between an algal epibiont and its host, Daphnia pulicaria. Limnol Oceanogr 46:871–881

    Google Scholar 

  • Baudoin M (1975) Host castration as a parasitic strategy. Evolution 29:335–352

    Article  Google Scholar 

  • Bengtsson J, Ebert D (1998) Distributions and impacts of microparasites on Daphnia in a rockpool metapopulation. Oecologia 115:213–221

    Article  Google Scholar 

  • Bittner K, Rothhaupt K-O, Ebert D (2002) Ecological interactions of the microparasite Caullerya mesnili and its host Daphnia galeata. Limnol Oceanogr 47:300–305

    Article  Google Scholar 

  • Boots M, Sasaki A (2002) Parasite-driven extinction in spatially explicit host-parasite systems. Am Nat 159:706–713

    Article  PubMed  Google Scholar 

  • Brambilla DJ (1983) Microsporiodosis in a Daphnia pulex population. Hydrobiologia 99:175–188

    Article  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35

    Article  PubMed  CAS  Google Scholar 

  • Callan WT, Sanderson SL (2003) Feeding mechanisms in carp: crossflow filtration, palatal protrusions, and flow reversals. J Exp Biol 206:883–892

    Article  PubMed  Google Scholar 

  • Carius HJ, Little T, Ebert D (2001) Genetic variation in a host—parasite association: potential for coevolution and frequency-dependent selection. Evolution 55:1146–1152

    Google Scholar 

  • Chiavelli DA, Mills EL, Threlkeld ST (1993) Host preference, seasonality, and community interactions of zooplankton epibionts. Limnol Oceanogr 38:574–583

    Google Scholar 

  • Clayton DH, Moore J (1997) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford

    Google Scholar 

  • De Leo G, Dobson A (2002) Virulence management in Wildlife populations. In: Dieckman U et al (eds) Adaptive dynamics of infectious diseases. In pursuit of virulence management. University Press, Cambridge, pp 413–435

    Google Scholar 

  • De Meester L, Vandenberghe J, Desender K, Dumont HJ (1994) Genotype-dependent daytime vertical distribution of Daphnia magna in a shallow pond. Belg J Zool 124:3–9

    Google Scholar 

  • De Meester L, Dawidowicz P, Van Gool E, Loose CJ (1999). Ecology and evolution of predator-induced behaviour of zooplankton: depth selection behaviour and vertical migration. In: Harvell CD, Tollrian R (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 160–176

    Google Scholar 

  • Decaestecker E, De Meester L, Ebert D (2002) In deep trouble: habitat selection constrained by multiple enemies. Proc Natl Acad Sci USA 99:5481–5485

    Article  PubMed  CAS  Google Scholar 

  • Decaestecker E, Ebert D, De Meester L (2003) Evidence for strong host clone—parasite species interactions in the Daphnia—microparasite system. Evolution 57:784–792

    PubMed  Google Scholar 

  • Decaestecker E, Lefever C, De Meester L, Ebert D (2004) Haunted by the past: evidence for dormant stage banks of Daphnia. Limnol Oceanogr 49:1355–1364

    Google Scholar 

  • Dobson C, Bowden RJ (1974) Studies on the immunity of sheep to Oesophagostomum columbianum: effects of low-protein diet on resistance to infection and cellular reactions in the gut. Parasitology 69:239–255

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP, Crawley M (1994) Pathogens and the structure of plant communities. Trends Ecol Evol 9:393–398

    Article  Google Scholar 

  • Dobson AP, Grenfell BT (1995) Ecology of infectious diseases in natural populations. University Press, Cambridge

    Google Scholar 

  • Duffy MA, Hall SR, Tessier AJ, Huebner M (2005) Selective predators and their parasitized prey: are epidemics in zooplankton under top-down control? Limnol Oceanogr 50:412–420

    Article  Google Scholar 

  • Ebert D (1995) The ecological interactions between a microsporidian parasite and its host Daphnia magna. J Anim Ecol 64:361–369

    Article  Google Scholar 

  • Ebert D, Payne RJH, Weisser WW (1997) The epidemiology of parasitic diseases in Daphnia. In: Dettner K, Bauer G, Völkl W (eds) Vrtical food web interactions: evolutionary patterns and driving forces. Springer, Berlin Heidelberg New York, pp 91–111

    Google Scholar 

  • Ebert D, Zshokke-Rohringer CD, Carius HJ (1998) Within-and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc R Soc Lond B Biol Sci 265:2127–2134

    Article  Google Scholar 

  • Ebert D, Lipsitch M, Mangin KL (2000a) The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. Am Nat 156:459–477

    Article  Google Scholar 

  • Ebert D, Zschokke-Rohringer CD, Carius HJ (2000b) Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122:200–209

    Article  Google Scholar 

  • Ebert D, Hottinger JW, Pajunen VI (2001) Temporal and spatial dynamics of parasite richness in a Daphnia metapopulation. Ecology 82:3417–3434

    Google Scholar 

  • Ebert D, Carius HJ, Little T, Decaestecker E (2004) The evolution of virulence when parasites cause host castration and gigantism. Am Nat 164:S19-S31

    Article  PubMed  Google Scholar 

  • Edmondson WT, Litt AH (1982) Daphnia in lake Washington. Limnol Oceanogr 27:272–293

    Google Scholar 

  • Fels D, Lee VA, Ebert D (2004) The impact of microparasites on the vertical distribution of Daphnia magna . Arch Hydrobiol 161:65–80

    Article  Google Scholar 

  • Gandon S, Agnew P, Michalakis Y (2002) Coevolution between parasite virulence and host life-history traits. Am Nat 160:374–388

    Article  PubMed  Google Scholar 

  • Green J (1974) Parasites and epibionts of Cladocera. Trans Zool Soc Lond 32:417–515

    Article  Google Scholar 

  • Gulland FMD (1995) The impact of infectious diseases on wild animal populations-a review. In Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. University Press, Cambridge, pp 20–51

    Google Scholar 

  • Haag CR, Sakwinska O, Ebert D (2003) Test of synergistic interaction between infection and inbreeding in Daphnia magna. Evolution 57:777–783

    PubMed  Google Scholar 

  • Hall SR, Duffy MA, Caceres CE (2005) Selective predation and productivity jointly drive complex behavior in host-parasite systems. Am Nat 165:70–81

    Article  PubMed  Google Scholar 

  • Hochachka WM, Dhondt AA (2000) Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci USA 97:5303–5306

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Dobson AP (1995) Macroparasites: observed patterns in naturally fluctuating animal populations. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge, pp 144–176

    Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1998) Prevention of population cycles by parasite removal. Science 282:2256–2258

    Article  PubMed  CAS  Google Scholar 

  • Hurd H (2001) Host fecundity reduction: a strategy for damage limitation. Trends Parasitol 17:363–368

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD (1993) The incidence, mechanisms and evolution of cytoplasmic sex-ratio distorters in animals. Biol Rev 68:121–197

    Article  Google Scholar 

  • Lafferty KD, Holt RD (2003) How should environmental stress affect the poulation dynamics of disease? Ecol Lett 6:654–664

    Article  Google Scholar 

  • Mangin KL, Lipsitch M, Ebert D (1995) Virulence and transmission modes of two microsporidia in Daphnia magna. Parasitology 111:133–142

    Google Scholar 

  • McCallum H, Dobson A (1995) Detecting disease and parasite threats to endangered species and ecosystem. Trends Ecol Evol 10:190–194

    Article  Google Scholar 

  • O’Keefe KJ, Antonovics J (2002) Playing by different rules: the evolution of virulence in sterilizing pathogens. Am Nat 159:597–605

    Article  PubMed  Google Scholar 

  • Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP (2003) Keeping the herd healthy and alert: implications of predator control for infectious disease. Ecol Lett 6:797–802

    Article  Google Scholar 

  • Pulkinnen K, Ebert D (2004) Host starvation decreases parasite load and mean host size in experimental populations. Ecology 85:823–833

    Article  Google Scholar 

  • Regoes RR, Hottinger JW, Sygnarski L, Ebert D (2003) The infection rate of D. magna by Pasteuria ramosa conforms with the mass action principle. Epidemiol Infect 131:957–966

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  Google Scholar 

  • Slater AFG, Keymer AE (1986) Heligmosomoides polygyrus (Nematoda): the influence of dietery protein on the dynamics of repeated infection. Proc R Soc Lond B Biol Sci 229:69–83

    PubMed  CAS  Google Scholar 

  • Sommer U (1989) Plankton ecology: succession in plankton communities. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stirnadel HA, Ebert D (1997) Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. J Anim Ecol 66:212–222

    Article  Google Scholar 

  • Talling JF, Driver D (1963) Some problems in the estimation of chlorophyll-a in phytoplankton. In: Proceedings of a conference on primary production measurements, marine and freshwater, US Atomic

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power (Ithaca, NY, USA)

  • Thompson JN (1994) The coevolutionary process. The University of Chicago Press, Chicago

    Google Scholar 

  • Threlkeld ST, Willey RL (1993) Colonization, interaction, and organization of cladoceran epibiont communities. Limnol Oceanogr 38:584–591

    Google Scholar 

  • Threlkeld ST, Chiavelli AD, Willey RL (1993) The organization of zooplankton epibiont communities. Trends Ecol Evol 8:317–321

    Article  Google Scholar 

  • Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parsitol Today 1999:311–313

    Article  Google Scholar 

  • Tompkins DM., Dobson AP, Arneberg P, Begon ME, Cattadori IM, Greenman JV, Heesterbeek JAP, Hudson PH, Newborn D, Pugliese A, Rizzoli AP, Rosa R, Rosso F, Wilson K (2002). Parasites and host population dynamics. In: Hudson PH et al (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 45–62

    Google Scholar 

  • Vidtman S (1993) The peculiarities of prevalence of microsporidium Larssonia daphnia in the natural Daphnia pulex population (Russian). Ekologija 1:61–69

    Google Scholar 

  • Willey RL, Cantrel PA, Threlkeld ST (1990) Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol Oceanogr 35:952–959

    Article  Google Scholar 

Download references

Acknowledgements

We thank Annelies Cappan for practical assistance, Luc Brendonck, Karl Cottenie, Joost Raeymaekers, Robby Stoks, Joost Vanoverbeke and Tom Wenseleers for their comments and discussion on earlier versions of the manuscript. Support for this research was provided by the Flemish Institute of Scientific Research in Industry (IWT), the KULeuven Research Fund (PDM 03/139) and het Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (F.W.O) to ED & SD, by the KULeuven Research Fund (project OT/00/14) to LDM, and by the Swiss Nationalfonds to DE. This field study complies with the current laws of Belgium, in which it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Decaestecker.

Additional information

Communicated by Roland Brandl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decaestecker, E., Declerck, S., De Meester, L. et al. Ecological implications of parasites in natural Daphnia populations. Oecologia 144, 382–390 (2005). https://doi.org/10.1007/s00442-005-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0083-7

Keywords

Navigation