Skip to main content
Log in

Control of cell migration by the novel protein phosphatase-2A interacting protein inka2

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cell migration is essential for many physiological and pathological processes, including embryonic development, wound healing, immune response and cancer metastasis. Inka2 transcripts are observed in migrating cells during embryonic development, suggesting the involvement of inka2 in cell migration. However, its precise role remains unclear. Here, we found that inka2 controlled focal adhesion dynamics and cell migration, likely by regulating protein phosphatase-2A (PP2A) function. A scratch assay revealed that inka2 shRNA-transfected NIH3T3 cells showed rapid wound closure, indicating an inhibitory effect by inka2 on cell migration. Live-cell imaging of NIH3T3 cells expressing EGFP-paxillin using total internal reflection fluorescence microscopy revealed that inka2 knockdown increased the turnover rate of focal adhesions. Given that PP2A, which consists of catalytic (C), regulatory (B) and scaffolding (A) subunits, is known to regulate focal adhesions, we examined the inka2-PP2A interaction. Immunoprecipitation revealed an association between inka2 and the PP2A C subunit. Binding of Inka2 to the C subunit prevented the association between the A and C subunits, suggesting that inka2 can inhibit PP2A function. Furthermore, both inka2 expression and PP2A inhibition decreased focal adhesion kinase-paxillin interaction, resulting in reduced formation of focal adhesions. We assessed the effect of pharmacological PP2A inhibition on the inka2 knockdown-induced increase in cell migration speed and found that treatment with a PP2A inhibitor negated the accelerated migration of inka2 knockdown cells. These results suggest that inka2 knockdown exerts its effects through PP2A-dependent regulation of focal adhesions. Our findings contribute to a better understanding of the molecular mechanisms underlying cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnaud L, Chen S, Liu F, Li B, Khatoon S, Grundke-Iqbal I, Iqbal K (2011) Mechanism of inhibition of PP2A activity and abnormal hyperphosphorylation of tau by I2(PP2A)/SET. FEBS Lett 585:2653–2659

    Article  CAS  Google Scholar 

  • Barber M, Arai Y, Morishita Y, Vigier L, Causeret F, Borello U, Ledonne F, Coppola E, Contremoulins V, Pfrieger FW, Tissir F, Govindan S, Jabaudon D, Proux-Gillardeaux V, Galli T, Pierani A (2015) Migration speed of Cajal-Retzius cells modulated by vesicular trafficking controls the size of higher-order cortical areas. Curr Biol 25:2466–2478

    Article  CAS  Google Scholar 

  • Baskaran R, Velmurugan BK (2018) Protein phosphatase 2A as therapeutic targets in various disease models. Life Sci 210:40–46

    Article  CAS  Google Scholar 

  • Beggs HE, Schahin-Reed D, Zang K, Goebbels S, Nave KA, Gorski J, Jones KR, Sretavan D, Reichardt LF (2003) FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron 40:501–514

    Article  CAS  Google Scholar 

  • Bellis SL, Miller JT, Turner CE (1995) Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem 270:17437–17441

    Article  CAS  Google Scholar 

  • Bribian A, Nocentini S, Llorens F, Gil V, Mire E, Reginensi D, Yoshida Y, Mann F, del Rio JA (2014) Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex. Nat Commun 5:4265

    Article  CAS  Google Scholar 

  • Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84:1315–1339

    Article  CAS  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC (2004) Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5:127–136

    Article  CAS  Google Scholar 

  • Deramaudt TB, Dujardin D, Noulet F, Martin S, Vauchelles R, Takeda K, Ronde P (2014) Altering FAK-paxillin interactions reduces adhesion, migration and invasion processes. PLoS One 9:e92059

    Article  Google Scholar 

  • Fan L, Liu MH, Guo M, Hu CX, Yan ZW, Chen J, Chen GQ, Huang Y (2016) FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget 7:63887–63900

    Article  Google Scholar 

  • Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26:315–333

    Article  CAS  Google Scholar 

  • Ghosh I, Hamilton AD, Regan L (2000) Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc 122:5658–5659

    Article  CAS  Google Scholar 

  • Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Muller U (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367–379

    Article  CAS  Google Scholar 

  • Hu Y, Lu J, Xu X, Lyu J, Zhang H (2017) Regulation of focal adhesion turnover in SDF-1alpha-stimulated migration of mesenchymal stem cells in neural differentiation. Sci Rep 7:10013

    Article  Google Scholar 

  • Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H, Kitamura Y, Nojima H (2000) A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J 19:562–571

    Article  CAS  Google Scholar 

  • Iwasaki Y, Yumoto T, Sakakibara S (2015) Expression profiles of inka2 in the murine nervous system. Gene Expr Patterns 19:83–97

    Article  CAS  Google Scholar 

  • Jackson JL, Young MR (2002) Protein phosphatase-2A modulates the serine and tyrosine phosphorylation of paxillin in Lewis lung carcinoma tumor variants. Clin Exp Metastasis 19:409–415

    Article  CAS  Google Scholar 

  • Janssens V, Zwaenepoel K, Rosse C, Petit MM, Goris J, Parker PJ (2016) PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration. J Cell Sci 129:1605–1618

    Article  CAS  Google Scholar 

  • Kim E, Ilic N, Shrestha Y, Zou L, Kamburov A, Zhu C, Yang X, Lubonja R, Tran N, Nguyen C, Lawrence MS, Piccioni F, Bagul M, Doench JG, Chouinard CR, Wu X, Hogstrom L, Natoli T, Tamayo P, Horn H, Corsello SM, Lage K, Root DE, Subramanian A, Golub TR, Getz G, Boehm JS, Hahn WC (2016) Systematic functional interrogation of rare acncer variants identifies oncogenic alleles. Cancer Discov 6:714–726

    Article  CAS  Google Scholar 

  • Kuboyama T, Luo X, Park K, Blackmore MG, Tojima T, Tohda C, Bixby JL, Lemmon VP, Kamiguchi H (2013) Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration. Exp Neurol 248:157–169

    Article  CAS  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  Google Scholar 

  • Luo T, Xu Y, Hoffman TL, Zhang T, Schilling T, Sargent TD (2007) Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development. Development 134:1279–1289

    Article  CAS  Google Scholar 

  • Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68

    Article  CAS  Google Scholar 

  • Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M (2012) Turnover of focal adhesions and cancer cell migration. Int J Cell Biol 2012:310616

    Article  Google Scholar 

  • Oakes PW (2018) Balancing forces in migration. Curr Opin Cell Biol 54:43–49

    Article  CAS  Google Scholar 

  • Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM (2010) Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188:877–890

    Article  CAS  Google Scholar 

  • Rashid M, Belmont J, Carpenter D, Turner CE, Olson EC (2017) Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development 144:4002–4014

    Article  CAS  Google Scholar 

  • Reid BS, Sargent TD, Williams T (2010) Generation and characterization of a novel neural crest marker allele, Inka1-LacZ, reveals a role for Inka1 in mouse neural tube closure. Dev Dyn 239:1188–1196

    Article  CAS  Google Scholar 

  • Schaller MD, Otey CA, Hildebrand JD, Parsons JT (1995) Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 130:1181–1187

    Article  CAS  Google Scholar 

  • Slupe AM, Merrill RA, Strack S (2011) Determinants for substrate specificity of protein phosphatase 2A. Enzyme Res 2011:398751

    Article  Google Scholar 

  • Strack S, Cribbs JT, Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem 279:47732–47739

    Article  CAS  Google Scholar 

  • Tian L, Zhang XG, Haesen D, Bravo J, Fominaya J, Choquet S, Zini JM, Loisel S, Waelkens E, Janssens V, Rebollo A (2018) Identification of PP2A/set binding sites and design of interacting peptides with potential clinical applications. Int J Pept Res Ther 24:479–488

    Article  CAS  Google Scholar 

  • Valiente M, Ciceri G, Rico B, Marin O (2011) Focal adhesion kinase modulates radial glia-dependent neuronal migration through connexin-26. J Neurosci 31:11678–11691

    Article  CAS  Google Scholar 

  • Villar-Cervino V, Molano-Mazon M, Catchpole T, Valdeolmillos M, Henkemeyer M, Martinez LM, Borrell V, Marin O (2013) Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells. Neuron 77:457–471

    Article  CAS  Google Scholar 

  • Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ (2007) RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 27:8296–8305

    Article  CAS  Google Scholar 

  • Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6:154–161

    Article  CAS  Google Scholar 

  • Wlodarchak N, Xing Y (2016) PP2A as a master regulator of the cell cycle. Crit Rev Biochem Mol Biol 51:162–184

    Article  CAS  Google Scholar 

  • Young MR, Liu SW, Meisinger J (2003) Protein phosphatase-2A restricts migration of Lewis lung carcinoma cells by modulating the phosphorylation of focal adhesion proteins. Int J Cancer 103:38–44

    Article  CAS  Google Scholar 

  • Yumoto T, Nakadate K, Nakamura Y, Sugitani Y, Sugitani-Yoshida R, Ueda S, Sakakibara S (2013) Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors. PLoS One 8:e79895

    Article  CAS  Google Scholar 

  • Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120:137–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. W. Hahn for providing plasmids, DONR223_PPP2R1A_WT and pBABE zeo PPP2CA Wt, obtained from Addgene. We thank Dr. T. Hida, Ms. R. Shigematsu, and Ms. A. Tanaka for their technical assistance.

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This work was supported by JSPS KAKENHI grant numbers 16 K14583, 18 K06491 (to H.A.) and 26430042 (to S.S.) and by Waseda University Grants for Special Research Projects 2018 K-352 (to H.A.), 2015 K-249 and 2017 K-301 (to S.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroki Akiyama or Shin-ichi Sakakibara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

All experiments in this study were approved by the Committee on the Ethics of Animal Experiments of Waseda University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiyama, H., Iwasaki, Y., Yamada, S. et al. Control of cell migration by the novel protein phosphatase-2A interacting protein inka2. Cell Tissue Res 380, 527–537 (2020). https://doi.org/10.1007/s00441-020-03169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03169-x

Keywords

Navigation