Skip to main content
Log in

Neuroanatomical evidence for indirect connections between the medial preoptic nucleus and the song control system: possible neural substrates for sexually motivated song

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In European starlings (Sturnus vulgaris) as in other seasonally breeding songbirds, a major function of song during the breeding season is mate attraction, and song in this context is highly sexually motivated. Song learning, perception, and production are regulated by nuclei of the song control system, but there is no evidence that these nuclei participate in the motivation to sing. Evidence suggests that the medial preoptic nucleus (POM), a diencephalic nucleus outside of the song control system, might regulate the motivation to sing, at least in a sexual context. If the POM is involved in the regulation of sexually motivated song, then this structure must interact with the song control system. To examine possible neuroanatomical connections between the POM and song control nuclei a tract-tracing study was performed in male starlings using the antero- and retrograde tract tracer, biotinylated dextran amine (BDA). No direct connections were identified between the POM and song control nuclei; however, labeled fibers were found to terminate in a region bordering dorsal-medial portions of the robust nucleus of the archistriatum (RA). Additionally, several indirect routes via which the POM might communicate with the song control system were identified. Specifically, POM projected to dorsomedial nucleus intercollicularis (DM), mesencephalic central gray (GCt), area ventralis of Tsai (AVT), and locus ceruleus (LoC), structures projecting directly to nuclei involved in song production (DM → vocal-patterning and respiratory nuclei; GCt, AVT, LoC → RA and HVC, and the context in which song is sung (AVT → area X). These results are consistent with the possibility that the POM regulates sexually motivated song through interactions with brain regions involved in vocal production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B
Fig. 2A–G
Fig. 3
Fig. 4A–D
Fig. 5A, B

Similar content being viewed by others

References

  • Absil P, Riters LV, Balthazart J (2001) Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica). Horm Behav 40:369–383

    Article  CAS  PubMed  Google Scholar 

  • Absil P, Papello M, Viglietti-Panzica C, Balthazart J, Panzica G (2002) The medial preoptic nucleus receives vasotocinergic inputs in male quail: a tract-tracing and immunocytochemical study. J Chem Neuroanat 24:27–39

    Article  PubMed  Google Scholar 

  • Andrew RJ (1973) The evocation of calls by diencephalic stimulation in the conscious chick. Brain Behav Evol 7:424–446

    Google Scholar 

  • Appeltants D, Absil P, Balthazart J, Ball GF (2000) Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Chem Neuroanat 18:117–133

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Ball GF, Balthazart J (2001) The distribution of tyrosine hydroxylase in the canary brain: demonstration of a specific and sexually dimorphic catecholaminergic innervation of the telencephalic song control nulcei. Cell Tissue Res 304:237–259

    Article  CAS  PubMed  Google Scholar 

  • Appeltants D, Ball GF, Balthazart J (2002) The origin of catecholaminergic inputs to the song control nucleus RA in canaries. Neuroreport 13:649–653

    Article  CAS  PubMed  Google Scholar 

  • Ball GF, Riters LV, Balthazart J (2002) Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrinol 23:137–178

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Absil P (1997) Identification of catecholaminergic inputs to and outputs from aromatase-containing brain areas of the Japanese quail by tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Comp Neurol 382:401–428

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A (1993) Brain aromatase and the control of male sexual behavior. J Steroid Biochem Mol Biol 44:521–540

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Foidart A, Hendrick JC (1990) The induction by testosterone of aromatase activity in the preoptic area and activation of copulatory behavior. Physiol Behav 47:83–94

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Dupiereux V, Aste N, Viglietti-Panzica C, Barrese M, Panzica GC (1994) Afferent and efferent connections of the sexually dimorphic medial preoptic nucleus of the male quail revealed by in vitro transport of DiI. Cell Tissue Res 276:455–475

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Absil P, Foidart A, Houbart M, Harada N, Ball GF (1996) Distribution of aromatase-immunoreactive cells in the forebrain of zebra finches (Taeniopygia guttata): implications for the neural action of steroids and nuclear definition in the avian hypothalamus. J Neurobiol 31:129–148

    Article  CAS  PubMed  Google Scholar 

  • Balthazart J, Absil P, Gerard M, Appeltants D, Ball GF (1998) Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci 18:6512–6527

    CAS  PubMed  Google Scholar 

  • Berk ML, Butler AB (1981) Efferent projections of the medial preoptic nucleus and medial hypothalamus in the pigeon. J Comp Neurol 203:379–399

    CAS  PubMed  Google Scholar 

  • Bottjer SW, Johnson F (1997) Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol 33:602–618

    CAS  PubMed  Google Scholar 

  • Bottjer SW, Miesner EA, Arnold AP (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224:901–903

    CAS  PubMed  Google Scholar 

  • Brenowitz EA (1991) Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251:303–305

    CAS  PubMed  Google Scholar 

  • Briganti F, Beani L, Panzica GC (1996) Connections of the dorsomedial part of the nucleus intercollicularis in a male non-songbird, the grey partridge: a tract-tracing study. Neurosci Lett 221:61–65

    Article  CAS  PubMed  Google Scholar 

  • Brown JL (1971) An exploratory study of vocalization areas in the brain of the red-winged blackbird (Agelaius phoeniceus). Behaviour 34:91–127

    Google Scholar 

  • Brown JL (1973) Behavior elicited by electrical stimulation of the brain of the Stellar’s jay. Condor 75:1–16

    Google Scholar 

  • Burt JM, Lent KL, Beecher MD, Brenowitz EA (2000) Lesions of the anterior forebrain song control pathway in female canaries affect song perception in an operant task. J Neurobiol 42:487

    Article  PubMed  Google Scholar 

  • Catchpole C, Slater P (1995) Bird song: biological themes and variations. Cambridge University Press, Cambridge

    Google Scholar 

  • Cohen J, Cheng MF (1981) The role of the midbrain in courtship behavior of the female ring dove (Streptopelia risoria): evidence from radiofrequency lesion and hormone implant studies. Brain Res 207:279–301

    Article  CAS  PubMed  Google Scholar 

  • Cuthill I, Hindmarsh AM (1985) Increase in starling song activity with removal of mate. Animal Behav 33:326–328

    Google Scholar 

  • Doupe AJ, Solis MM (1997) Song- and order-selective neurons develop in the songbird anterior forebrain during vocal learning. J Neurobiol 33:694–709

    CAS  PubMed  Google Scholar 

  • Eens M, Pinxten R (1990) Extra-pair courtship in the starling, Sturnus vulgaris. Ibis 132:618–619

    Google Scholar 

  • Eens M, Pinxten R (1995) Inter-sexual conflicts over copulations in the European starling: evidence for the female mate-guarding hypothesis . Behav Ecol Sociobiol 36:71–81

    Article  Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1990) On the function of singing and wing-waving in the European starling Sturnus vulgaris. Bird Study 37:48–52

    Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1991) Male song as a cue for mate choice in the European starling. Behaviour 116:210–238

    Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1993) Function of the song and song repertoire in the European starling (Sturnus vulgaris): an aviary experiment. Behaviour 125:51–66

    Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1994) Variation in singing activity during the breeding cycle of the European starling Sturnus vulgaris. Belg J Zool 124:167–174

    Google Scholar 

  • Foster EF, Mehta RP, Bottjer SW (1997) Axonal connections of the medial magnocellular nucleus of the anterior neostriatum in zebra finches. J Comp Neurol 382:364–381

    CAS  PubMed  Google Scholar 

  • Fritzsch B (1993) Fast axonal diffusion of 3000 molecular weight dextran amines. J Neurosci Methods 50:95–103

    Article  CAS  PubMed  Google Scholar 

  • Gentner TQ, Hulse SH (2000) Female European starling preference and choice for variation in conspecific male song. Anim Behav 59:443–458

    Google Scholar 

  • Goodson JL, Bass AH (2000) Vasotocin innervation and modulation of vocal-acoustic circuitry in the teleost Porichthys notatus. J Comp Neurol 422:363–379

    Article  CAS  PubMed  Google Scholar 

  • Goodson JL, Bass AH (2002) Vocal-acoustic circuitry and descending vocal pathways in teleost fish: convergence with terrestrial vertebrates reveals conserved traits. J Comp Neurol 448:298–322

    Article  PubMed  Google Scholar 

  • Hessler NA, Doupe AJ (1999) Social context modulates singing-related neural activity in the songbird forebrain. Nat Neurosci 2:209–211

    CAS  PubMed  Google Scholar 

  • Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the bird sings: context-dependent gene expression. Neuron 21:775–788

    CAS  PubMed  Google Scholar 

  • Kelley DB, Nottebohm F (1979) Projections of a telencephalic auditory nucleus—field L—in the canary. J Comp Neurol 183:455–469

    CAS  PubMed  Google Scholar 

  • Lewis JW, Ryan SM, Arnold AP, Butcher LL (1981) Evidence for a catecholaminergic projection to area X in the zebra finch. J Comp Neurol 196:347–354

    CAS  PubMed  Google Scholar 

  • Maney DL, Ball GF (2003) Fos-like immunoreactivity in catecholaminergic brain nuclei after territorial behavior in free-living song sparrows. J Neurobiol 56:163–170

    Article  PubMed  Google Scholar 

  • Mantyh PW (1982) Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol 206:146–158

    CAS  PubMed  Google Scholar 

  • Margoliash D (1997) Functional organization of forebrain pathways for song production and perception. J Neurobiol 33:671–693

    CAS  PubMed  Google Scholar 

  • Mello CV, Vates GE, Okuhata S, Nottebohm F (1998) Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). J Comp Neurol 395:137–160

    CAS  PubMed  Google Scholar 

  • Morrell JI, Greenberger LM, Pfaff DW (1981) Hypothalamic, other diencephalic, and telencephalic neurons that project to the dorsal midbrain. J Comp Neurol 201:589–620

    CAS  PubMed  Google Scholar 

  • Mountjoy DJ, Lemon RE (1995) Female choice for complex song in the European starling. Behav Ecol Sociobiol 38:65–71

    Article  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    CAS  PubMed  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Balthazart J (1996) The sexually dimorphic medial preoptic nucleus of quail: a key brain area mediating steroid action on male sexual behavior. Front Neuroendocrinol 17:51–125

    Article  CAS  PubMed  Google Scholar 

  • Panzica GC, Plumari L, Garcia-Ojeda E, Deviche P (1999) Central vasotocin-immunoreactive system in a male passerine bird (Junco hyemalis). J Comp Neurol 409:105–117

    Article  CAS  PubMed  Google Scholar 

  • Phillips RE, Youngren OM, Peek FW (1972) Repetitive vocalizations evoked by local electrical stimulation of avian brains. I. Awake chickens (Gallus gallus). Anim Behav 20:689–705

    CAS  PubMed  Google Scholar 

  • Pinxten R, Eens M (1997) Copulation and mate-guarding patterns in polygynous European starlings. Animal Behav 54:45–58

    Article  Google Scholar 

  • Riters LV, Ball GF (1999) Lesions to the medial preoptic area affect singing in the male European starling (Sturnus vulgaris). Horm Behav 36:276–286

    Google Scholar 

  • Riters LV, Teague DP (2003) The volumes of song control nuclei, HVC and lMAN, relate to differential behavioral responses of female European starlings to male songs produced within and outside of the breeding season. Brain Res 978:91–98

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Absil P, Balthazart J (1998) Effects of brain testosterone implants on appetitive and consummatory components of male sexual behavior in Japanese quail. Brain Res Bull 47:69–79

    Article  CAS  PubMed  Google Scholar 

  • Riters LV, Eens M, Pinxten R, Duffy DL, Balthazart J, Ball GF (2000) Seasonal changes in courtship song and the medial preoptic area in male European starlings (Sturnus vulgaris). Horm Behav 38:250–261

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    CAS  PubMed  Google Scholar 

  • Saldanha CJ, Tuerk MJ, Kim YH, Fernandes AO, Arnold AP, Schlinger BA (2000) Distribution and regulation of telencephalic aromatase expression in the zebra finch revealed with a specific antibody. J Comp Neurol 423:619–630

    Article  CAS  PubMed  Google Scholar 

  • Seller TJ (1980) Midbrain regions involved in call production in Java sparrows. Behav Brain Res 1:257–265

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Schlinger BA, Campagnoni AT, Arnold AP (1995) An atlas of aromatase mRNA expression in the zebra finch brain. J Comp Neurol 360:172–184

    CAS  PubMed  Google Scholar 

  • Sohrabji F, Nordeen EJ, Nordeen KW (1990) Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol 53:51–63

    CAS  PubMed  Google Scholar 

  • Striedter GF, Vu ET (1998) Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches. J Neurobiol 34:27–40

    CAS  PubMed  Google Scholar 

  • Vates GE, Broome BM, Mello CV, Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. J Comp Neurol 366:613–642

    CAS  PubMed  Google Scholar 

  • Walters MJ, Harding CF (1988) The effects of an aromatization inhibitor on the reproductive behavior of male zebra finches. Horm Behav 22:207–218

    Google Scholar 

  • Wild JM, Li D, Eagleton C (1997) Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). J Comp Neurol 377:392–413

    CAS  PubMed  Google Scholar 

  • Wiley RH, Piper WH, Archawaranon M, Thompson EW (1993) Singing in relation to social dominance and testosterone in white-throated sparrows. Behaviour 127:175–190

    Google Scholar 

  • Williams H, Vicario DS (1993) Temporal patterning of song production: participation of nucleus uvaeformis of the thalamus. J Neurobiol 24:903–912

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Donald P. Teague and Jandra L. Morrow for technical assistance during this project, Doug Thiessen for assistance with capturing starlings, and Bill Feeny for illustrations and assistance with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren V. Riters.

Additional information

We gratefully acknowledge grant sponsors NIMH (R01-MH 65645) to LVR and NSF for a graduate research fellowship to SJA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riters, L.V., Alger, S.J. Neuroanatomical evidence for indirect connections between the medial preoptic nucleus and the song control system: possible neural substrates for sexually motivated song. Cell Tissue Res 316, 35–44 (2004). https://doi.org/10.1007/s00441-003-0838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0838-6

Keywords

Navigation