Skip to main content
Log in

The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Preeclampsia is a heritable pregnancy disorder that presents new onset hypertension and proteinuria. We have previously reported genetic linkage to preeclampsia on chromosomes 2q, 5q and 13q in an Australian/New Zealand (Aust/NZ) familial cohort. This current study centered on identifying the susceptibility gene(s) at the 5q locus. We first prioritized candidate genes using a bioinformatic tool designed for this purpose. We then selected a panel of known SNPs within ten prioritized genes and genotyped them in an extended set of the Aust/NZ families and in a very large, independent Norwegian case/control cohort (1,139 cases, 2,269 controls). In the Aust/NZ cohort we identified evidence of a genetic association for the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene (rs3734016, P uncorr = 0.009) and for the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene (rs2549782, P uncorr = 0.004). In the Norwegian cohort we identified evidence of a genetic association for ERAP1 (rs34750, P uncorr = 0.011) and for ERAP2 (rs17408150, P uncorr = 0.009). The ERAP2 SNPs in both cohorts remained statistically significant (rs2549782, P corr = 0.018; rs17408150, P corr = 0.039) after corrections at an experiment-wide level. The ERAP1 and ERAP2 genes encode enzymes that are reported to play a role in blood pressure regulation and essential hypertension in addition to innate immune and inflammatory responses. Perturbations within vascular, immunological and inflammatory pathways constitute important physiological mechanisms in preeclampsia pathogenesis. We herein report a novel preeclampsia risk locus, ERAP2, in a region of known genetic linkage to this pregnancy-specific disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abecasis GR, Cookson WO, Cardon LR (2000) Pedigree tests of transmission disequilibrium. Eur J Hum Genet 8:545–551

    Article  CAS  PubMed  Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Arngrímsson R, Bjornsson S, Geirsson RT, Bjornsson H, Walker JJ, Snaedal G (1990) Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol 97:762–769

    PubMed  Google Scholar 

  • Blangero J, Goring HH, Kent JW Jr, Williams JT, Peterson CP, Almasy L, Dyer TD (2005) Quantitative trait nucleotide analysis using Bayesian model selection. Hum Biol 77:541–559

    Article  PubMed  Google Scholar 

  • Boerwinkle E, Chakraborty R, Sing CF (1986) The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann Hum Genet 50:181–194

    Article  CAS  PubMed  Google Scholar 

  • Brown MA, Gallery EDM, Gatt SP, Leslie G, Robinson J (1993) Management of hypertension in pregnancy: executive summary. Med J Aust 158:700–702

    Google Scholar 

  • Brown MA, Hague WM, Higgins J, Lowe S, McCowan L, Oats J, Peek MJ, Rowan JA, Walters BN (2000) The detection, investigation and management of hypertension in pregnancy: executive summary. Aust N Z J Obstet Gynaecol 40:133–138

    Article  CAS  PubMed  Google Scholar 

  • Chesley SC, Annitto JE, Cosgrove RA (1976) The remote prognosis of eclamptic women. Sixth periodic report. Am J Obstet Gynecol 124:446–459

    CAS  PubMed  Google Scholar 

  • Dekker GA, Sibai BM (1999) The immunology of preeclampsia. Semin Perinatol 23:24–33

    Article  CAS  PubMed  Google Scholar 

  • Duggirala R, Williams JT, Williams-Blangero S, Blangero J (1997) A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol 14:987–992

    Article  CAS  PubMed  Google Scholar 

  • Esplin MS, Fausett MB, Fraser A, Kerber R, Mineau G, Carrillo J, Varner MW (2001) Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med 344:867–872

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick E, Goring HH, Liu H, Borg A, Forrest S, Cooper DW, Brennecke SP, Moses EK (2004) Fine mapping and SNP analysis of positional candidates at the preeclampsia susceptibility locus (PREG1) on chromosome 2. Hum Biol 76:849–862

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick E, Johnson MP, Dyer TD, Forrest S, Elliott K, Blangero J, Brennecke SP, Moses EK (2009) Genetic association of the activin A receptor gene (ACVR2A) and pre-eclampsia. Mol Hum Reprod 15:195–204

    Article  CAS  PubMed  Google Scholar 

  • Founds SA, Conley YP, Lyons-Weiler JF, Jeyabalan A, Hogge WA, Conrad KP (2009) Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30:15–24

    Article  CAS  PubMed  Google Scholar 

  • Funai EF, Paltiel OB, Malaspina D, Friedlander Y, Deutsch L, Harlap S (2005) Risk factors for pre-eclampsia in nulliparous and parous women: the Jerusalem perinatal study. Paediatr Perinat Epidemiol 19:59–68

    Article  CAS  PubMed  Google Scholar 

  • Gammill HS, Roberts JM (2007) Emerging concepts in preeclampsia investigation. Front Biosci 12:2403–2411

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Hattori A, Ishii Y, Tsujimoto M (2006) Reduced activity of the hypertension-associated Lys528Arg mutant of human adipocyte-derived leucine aminopeptidase (A-LAP)/ER-aminopeptidase-1. FEBS Lett 580:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Hattori A, Kitatani K, Matsumoto H, Miyazawa S, Rogi T, Tsuruoka N, Mizutani S, Natori Y, Tsujimoto M (2000) Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. J Biochem (Tokyo) 128:755–762

    CAS  Google Scholar 

  • Holmen J, Midthjell K, Krüger Ø, Langhammer A, Holmen TL, Bratberg GH, Vatten L, Lund-Larsen PG (2003) The Nord-Trøndelag Health Study 1995–97 (HUNT 2): objectives, contents, methods and participation. Norsk Epidemiol 13:19–32

    Google Scholar 

  • Holmen J, Kjelsaas MB, Krüger Ø, Ellekjær H, Bratberg G, Holmen TL, Midthjell K, Stavnås PA, Krokstad S (2004) Attitudes to genetic epidemiology—illustrated by questions for re-consent to 61,426 participants at HUNT. Norsk Epidemiol 14:27–31

    Google Scholar 

  • Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    Article  CAS  PubMed  Google Scholar 

  • Ilekis JV, Reddy UM, Roberts JM (2007) Preeclampsia—a pressing problem: an executive summary of a National Institute of Child Health and Human Development workshop. Reprod Sci 14:508–523

    Article  CAS  PubMed  Google Scholar 

  • Irgens HU, Reisaeter L, Irgens LM, Lie RT (2001) Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. Br Med J 323:1213–1217

    Article  CAS  Google Scholar 

  • Johnson MP, Fitzpatrick E, Dyer TD, Jowett JB, Brennecke SP, Blangero J, Moses EK (2007) Identification of two novel quantitative trait loci for pre-eclampsia susceptibility on chromosomes 5q and 13q using a variance components-based linkage approach. Mol Hum Reprod 13:61–67

    Article  CAS  PubMed  Google Scholar 

  • Lachmeijer AM, Arngrimsson R, Bastiaans EJ, Frigge ML, Pals G, Sigurdardottir S, Stefansson H, Palsson B, Nicolae D, Kong A, Aarnoudse JG, Gulcher JR, Dekker GA, ten Kate LP, Stefansson K (2001) A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet 9:758–764

    Article  CAS  PubMed  Google Scholar 

  • Laivuori H, Lahermo P, Ollikainen V, Widen E, Haiva-Mallinen L, Sundstrom H, Laitinen T, Kaaja R, Ylikorkala O, Kere J (2003) Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet 72:168–177

    Article  CAS  PubMed  Google Scholar 

  • Lie RT, Rasmussen S, Brunborg H, Gjessing HK, Lie-Nielsen E, Irgens LM (1998) Fetal and maternal contributions to risk of pre-eclampsia: population based study. Br Med J 316:1343–1347

    CAS  Google Scholar 

  • Marsh DG, Neely JD, Breazeale DR, Ghosh B, Freidhoff LR, Ehrlich-Kautzky E, Schou C, Krishnaswamy G, Beaty TH (1994) Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin E concentrations. Science 264:1152–1156

    Article  CAS  PubMed  Google Scholar 

  • Mizutani S, Tomoda Y (1996) Effects of placental proteases on maternal and fetal blood pressure in normal pregnancy and preeclampsia. Am J Hypertens 9:591–597

    Article  CAS  PubMed  Google Scholar 

  • Moffett A, Hiby SE (2007) How does the maternal immune system contribute to the development of pre-eclampsia? Placenta 28(Suppl A):S51–S56

    Article  PubMed  CAS  Google Scholar 

  • Moses EK, Lade JA, Guo G, Wilton AN, Grehan M, Freed K, Borg A, Terwilliger JD, North R, Cooper DW, Brennecke SP (2000) A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet 67:1581–1585

    Article  CAS  PubMed  Google Scholar 

  • Moses EK, Fitzpatrick E, Freed KA, Dyer TD, Forrest S, Elliott K, Johnson MP, Blangero J, Brennecke SP (2006) Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod 12:505–512

    Article  CAS  PubMed  Google Scholar 

  • Moses EK, Johnson MP, Tømmerdal L, Forsmo S, Curran JE, Abraham LJ, Charlesworth JC, Brennecke SP, Blangero J, Austgulen R (2008) Genetic association of preeclampsia to the inflammatory response gene SEPS1. Am J Obstet Gynecol 198:336e1–336e5

    Google Scholar 

  • National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy (2000) Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 183:S1–S22

    Article  Google Scholar 

  • Oudejans CB, Mulders J, Lachmeijer AM, van Dijk M, Konst AA, Westerman BA, van Wijk IJ, Leegwater PA, Kato HD, Matsuda T, Wake N, Dekker GA, Pals G, ten Kate LP, Blankenstein MA (2004) The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod 10:589–598

    Article  CAS  PubMed  Google Scholar 

  • Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J, Pe’er I, Burtt NP, Blumenstiel B, DeFelice M, Parkin M, Barry R, Winslow W, Healy C, Graham RR, Neale BM, Izmailova E, Roubenoff R, Parker AN, Glass R, Karlson EW, Maher N, Hafler DA, Lee DM, Seldin MF, Remmers EF, Lee AT, Padyukov L, Alfredsson L, Coblyn J, Weinblatt ME, Gabriel SB, Purcell S, Klareskog L, Gregersen PK, Shadick NA, Daly MJ, Altshuler D (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, Meyers DA, Levitt RC (1995) Genetic susceptibility to asthma—bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 333:894–900

    Article  CAS  PubMed  Google Scholar 

  • Rock KL, York IA, Goldberg AL (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5:670–677

    Article  CAS  PubMed  Google Scholar 

  • Roten LT, Johnson MP, Forsmo S, Fitzpatrick E, Dyer TD, Brennecke SP, Blangero J, Moses EK, Austgulen R (2009) Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet 17:250–257

    Article  CAS  PubMed  Google Scholar 

  • Sargent IL, Germain SJ, Sacks GP, Kumar S, Redman CW (2003) Trophoblast deportation and the maternal inflammatory response in pre-eclampsia. J Reprod Immunol 59:153–160

    Article  CAS  PubMed  Google Scholar 

  • Sargent IL, Borzychowski AM, Redman CW (2006) Immunoregulation in normal pregnancy and pre-eclampsia: an overview. Reprod Biomed Online 13:680–686

    Article  CAS  PubMed  Google Scholar 

  • Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, Greer F, Schomburg L, Fruci D, Niedermann G, van Endert PM (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6:689–697

    Article  CAS  PubMed  Google Scholar 

  • Skjaerven R, Vatten LJ, Wilcox AJ, Ronning T, Irgens LM, Lie RT (2005) Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. Bmj 331:877

    Article  PubMed  Google Scholar 

  • Sobel E, Lange K (1996) Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323–1337

    CAS  PubMed  Google Scholar 

  • Storm N, Darnhofer-Patel B, van den Boom D, Rodi CP (2003) MALDI-TOF mass spectrometry-based SNP genotyping. In: Kwok P (ed) Single nucleotide polymorphisms: methods and protocols, vol 212. Humana Press, Totowa, N.J., pp 241–262

    Chapter  Google Scholar 

  • Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10:591–597

    Article  CAS  PubMed  Google Scholar 

  • Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, Tsujimoto M (2003) Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem 278:32275–32283

    Article  CAS  PubMed  Google Scholar 

  • Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7:290–298

    CAS  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium, The Australo–Anglo–American Spondylitis Consortium (2007) Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39:1329–1337

    Article  CAS  Google Scholar 

  • Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sci 66:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Nakayama J, Yamakawa-Kobayashi K, Hamaguchi H, Miyazaki R, Arinami T (2002) Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. Hum Mutat 19:251–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants HD049847 (to E.K.M., S.P.B. and J.B.) and MH059490 (to J.B.); a grant from the Semp Russ Foundation of the San Antonio Area Foundation (to M.P.J.); The Norwegian University of Science and Technology (NTNU) (R.A.); the Central Norway Regional Health Authority; and the Medical Faculty and Office of International Relations at NTNU (to L.T.R., Ph.D. scholar). M.P.J. is the recipient of a Cowles Postdoctoral Fellowship. This investigation was conducted in facilities constructed with support from Research Facilities Improvement Program grants RR13556 and RR017515 from the National Center for Research Resources, National Institutes of Health. The Nord-Trøndelag Health Study (the HUNT study) is a collaboration between the HUNT Research Centre, the Faculty of Medicine, NTNU, the Norwegian Institute of Public Health and the Nord-Trøndelag County Council. We thank Dr. Jeremy Jowett for bioinformatic analyses and Mr. Anthony Borg for technical assistance. We thank all the preeclampsia families and unrelated preeclamptic women whose participation made this work possible and the support of all the clinicians and research midwives who contributed to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Johnson.

Additional information

M. P. Johnson and L. T. Roten contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.P., Roten, L.T., Dyer, T.D. et al. The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Hum Genet 126, 655–666 (2009). https://doi.org/10.1007/s00439-009-0714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-009-0714-x

Keywords

Navigation