Skip to main content
Log in

Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In plants, low temperatures can activate the CBF cold response pathway playing a prominent role in cold acclimation by triggering a set of cold-related gene expressions. CBF homologous gene, designated as LpCBF3, from a cold-tolerant perennial ryegrass (Lolium perenne L.) accession was identified. It carries the sequences for nuclear localization signal (NLS), AP2 DNA-binding domains and an acidic activation present in most of the plant CBF proteins. Southern analysis indicated the presence of three homologs of LpCBF3 gene in perennial ryegrass genome, and only one amino acid variation in LpCBF3 protein between cold-tolerant and -sensitive perennial ryegrass accessions. In their putative promoter regions, some differential regions were found. Northern blotting and RT-PCR analysis found that LpCBF3 reached the highest expression after 1.5 h of cold treatment (4°C). The COR homologous gene, a downstream gene of CBF, can be expressed in the plant stem of cold-tolerant perennial ryegrass accessions without cold treatment. Without cold treatment, the COR gene cannot be activated in cold-sensitive perennial ryegrass accessions. Cold treatment can prompt expression levels of COR homologous genes in both perennial ryegrass accessions. In transgenic Arabidopsis, the overexpression of LpCBF3 with the 35S promoter resulted in dwarf-like plants, later flowering and greater freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470

    Article  PubMed  CAS  Google Scholar 

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Asay KH (1992) Breeding potentials in perennial Triticeae grasses. Hereditas 116:167–173

    Article  Google Scholar 

  • Bughrara SS, Zhao H, Wang YX (2005) Isolation and characterization of LpCBF3 from ryegrass. US patent application number 10/883,512, PCT application number PCT/US/2005/023516

  • Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong XH, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley CBF3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Guo WW, Ward RW, Thomashow MF (1992) Characterization of a cold-regulated wheat gene related to Arabidopsis Cor47. Plant Physiol 100:915–922

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MO, Eagles CF (1988) Assessment of perennial ryegrass (Lolium-Perenne L) for Breeding. 1. Freezing tolerance. Euphytica 38:75–84

    Article  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi F, Takumi S, Kume S, Ishibashi M, Ohno R, Murai K, Nakamura C (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  PubMed  CAS  Google Scholar 

  • Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo AM, Baldi P, Mare C, Terzi VV, Galiba G, Cattivelli L, Di Fonzo N (2000) The cold-dependent accumulation of COR TMC-AP3 in cereals with contrasting frost tolerance is regulated by different mRNA expression and protein turnover. Plant Sci 156:47–54

    Article  CAS  Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    Article  PubMed  CAS  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A(m)2 in Triticum monococcum. Mol Genet Gen 275:193–203

    CAS  Google Scholar 

  • Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Li JS, Li XH, Corke H (2005) AFLP and RFLP linkage map in Coix. Genet Res Crop Evol 52:209–214

    Article  Google Scholar 

  • Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homeologous chromosome arm. Theor Appl Genet 78:342–348

    Article  Google Scholar 

  • Skinner J, Szucs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    Article  PubMed  CAS  Google Scholar 

  • Skot L, Sackville Hamilton NR, Mizen S, Chorlton KH, Thomas ID (2002) Molecular genecology of temperature response in Lolium perenne. 2. Association of AFLP markers with ecogeography. Mol Ecol 11:1865–1876

    Article  PubMed  CAS  Google Scholar 

  • Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C (2003) Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein. J Exp Bot 54:2265–2274

    Article  PubMed  CAS  Google Scholar 

  • Tar’an B, Zhang C, Warkentin T, Tullu A, Vandenberg A (2005) Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers and morphological and physiological characters. Genome 48:257–272

    PubMed  CAS  Google Scholar 

  • Thomashow MF, Gilmour SJ, Stockinger EJ, Jaglo-Ottosen KR, Zarka DG (2001) Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiologia Plantarum 112:171–175

    Article  CAS  Google Scholar 

  • Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  PubMed  CAS  Google Scholar 

  • Warnock DL, Leep RH, Bughrara SS (2005) Cold tolerance evaluation of improved diploid and tetraploid cultivars of perennial ryegrass. Online, Crop Management. doi:10.1094/CM-2005-0221-01-RS

  • Xiong LM, Lee H, Ishitani M, Tanaka Y, Stevenson B, Koiwa H, Bressan RA, Hasegawa PM, Zhu JK (2002) Repression of stress-responsive genes by FIERY2 a novel transcriptional regulator in Arabidopsis. Proc Natl Acad Sci USA 99:10899–10904

    Article  PubMed  CAS  Google Scholar 

  • Xiong YW, Fei SZ (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224:878–888

    Article  PubMed  CAS  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    Article  PubMed  CAS  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Mian MAR, Bouton JH (2006) Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci 46:497–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleiman S. Bughrara.

Additional information

Communicated by J.-K. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Bughrara, S.S. Isolation and characterization of cold-regulated transcriptional activator LpCBF3 gene from perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 279, 585–594 (2008). https://doi.org/10.1007/s00438-008-0335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0335-4

Keywords

Navigation