Skip to main content

Advertisement

Log in

Gene expression analysis of wild Leishmania major isolates: identification of genes preferentially expressed in amastigotes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trying to identify virulence genes of wild Leishmania (L.) major parasites, the species responsible for zoonotic cutaneous leishmaniasis, we compared, using differential display technique, gene expression in two L. major isolates obtained from human lesions and characterized by their contrasting pathogenicity in the BALB/c mouse model. The analysis was performed on amastigotes derived from BALB/c mice lesions. A total of 13 different clones were identified, but the use of reverse transcription and real-time polymerase chain reaction technique did not allow us to confirm any of these clones as differentially expressed. However, the fact that we used the amastigote stage of the parasite led us the identification of amastigote-specific genes, essentially (8 among 13). They are overexpressed, two to seven times, in amastigotes relative to promastigotes. Sequence analysis revealed that two of them namely LPG3 and the ATP dependent RNA helicase correspond to previously described amastigote-specific genes. The others correspond to genes involved in important biological process. Their better characterization could help the development of new drugs targeting the processes in which these molecules are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Russell DG (1992) The interaction of Leishmania species with macrophages. Adv Parasitol 31:175–254

    Article  PubMed  CAS  Google Scholar 

  • Almeida R, Gilmartin BJ, McCann SH, Norrish A, Ivens AC, Lawson D, Levick MP, Smith DF, Dyall SD, Vetrie D, Freeman TC, Coulson RM, Sampaio I, Schneider H, Blackwell JM (2004) Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol 136:87–100

    Article  PubMed  CAS  Google Scholar 

  • Amer AO, Swanson MS (2002) A phagosome of one’s own: a microbial guide to life in the macrophage. Curr Opin Microbiol 5:56–61 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  • Barral A, Petersen EA, Sacks DL, Neva FA (1983) Late metastatic Leishmaniasis in the mouse. A model for mucocutaneous disease. Am J Trop Med Hyg 32:277–285

    PubMed  CAS  Google Scholar 

  • Ben Achour Y, Chenik M, Louzir H, Dellagi K (2002) Identification of a disulfide isomerase protein of Leishmania major as a putative virulence factor. Infect Immun 70:3576–3585

    Article  PubMed  CAS  Google Scholar 

  • Beverley SM, Turco SJ (1998) Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol 6:35–40

    Article  PubMed  CAS  Google Scholar 

  • Briolat V, Reysset G (2002) Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. J Bacteriol 184:2333–2343

    Article  PubMed  CAS  Google Scholar 

  • Campbell JW, Cronan JE Jr (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu Rev Microbiol 55:305–332

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty R, Mukherjee S, Lu HG, McGwire BS, Chang KP, Basu MK (1996) Kinetics of entry of virulent and avirulent strains of Leishmania donovani into macrophages: a possible role of virulence molecules (gp63 and LPG). J Parasitol 82:632–635

    Article  PubMed  CAS  Google Scholar 

  • Chenik M, Douagi F, Achour YB, Khalef NB, Ouakad M, Louzir H, Dellagi K (2005) Characterization of two different mucolipin-like genes from Leishmania major. Parasitol Res 98:5–13

    Article  PubMed  Google Scholar 

  • Chenik M, Chaabouni N, Ben Achour-Chenik Y, Ouakad M, Lakhal-Naouar I, Louzir H, Dellagi K (2006) Identification of a new developmentally regulated Leishmania major large RAB GTPase. Biochem Biophys Res Commun 341:541–548

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AC (2002) Parasitic adaptive mechanisms in infection by leishmania. Exp Mol Pathol 72:132–141

    Article  PubMed  CAS  Google Scholar 

  • Descoteaux A, Luo Y, Turco SJ, Beverley SM (1995) A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 269:1869–1872

    Article  PubMed  CAS  Google Scholar 

  • Descoteaux A, Avila HA, Zhang K, Turco SJ, Beverley SM (2002) Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J 21:4458–4469

    Article  PubMed  CAS  Google Scholar 

  • Desjeux P (1996) Leishmaniasis. Public health aspects and control. Clin Dermatol 14:417–423

    Article  PubMed  CAS  Google Scholar 

  • Diaz Anel AM, Rossi MS, Espinosa JM, Guida C, Freitas FA, Kornblihtt AR, Zingales B, Flawia MM, Torres HN (2000) MRNA encoding a putative RNA helicase of the DEAD-box gene family is up-regulated in trypomastigotes of Trypanosoma cruzi. J Eukaryot Microbiol 47:555–560

    Article  PubMed  CAS  Google Scholar 

  • Ding C, Cantor CR (2004) Quantitative analysis of nucleic acids-the last few years of progress. J Biochem Mol Biol 37:1–10

    PubMed  CAS  Google Scholar 

  • Duclos S, Desjardins M (2000) Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2:365–377

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Habich D, Ziegelbauer K (2004) Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073

    Article  PubMed  CAS  Google Scholar 

  • Gornicki P (2003) Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites. Int J Parasitol 33:885–896

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Goyal N, Rastogi AK (2001) In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol 17:150–153

    Article  PubMed  CAS  Google Scholar 

  • Handman E (1999) Cell biology of Leishmania. Adv Parasitol 44:1–39

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ, White SW, Rock CO (2001) Lipid biosynthesis as a target for antibacterial agents. Prog Lipid Res 40:467–497

    Article  PubMed  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  • Heung LJ, Del Poeta M (2005) Unlocking the DEAD-box: a key to cryptococcal virulence? J Clin Invest 115:593–595

    Article  PubMed  CAS  Google Scholar 

  • Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218

    Article  PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Jaffe CL, Rachamim N (1989) Amastigote stage-specific monoclonal antibodies against Leishmania major. Infect Immun 57:3770–3777

    PubMed  CAS  Google Scholar 

  • Jelenska J, Sirikhachornkit A, Haselkorn R, Gornicki P (2002) The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J Biol Chem 277:23208–23215

    Article  PubMed  CAS  Google Scholar 

  • Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, Dwyer DM (2005) Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem 280:3847–3861

    Article  PubMed  CAS  Google Scholar 

  • Kebaier C, Louzir H, Chenik M, Ben Salah A, Dellagi K (2001) Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun 69:4906–4915

    Article  PubMed  CAS  Google Scholar 

  • Kunji ER (2004) The role and structure of mitochondrial carriers. FEBS Lett 564:239–244

    Article  PubMed  CAS  Google Scholar 

  • Landfear SM (2001) Molecular genetics of nucleoside transporters in Leishmania and African trypanosomes. Biochem Pharmacol 62:149–155

    Article  PubMed  CAS  Google Scholar 

  • Landfear SM, Ullman B, Carter NS, Sanchez MA (2004) Nucleoside and nucleobase transporters in parasitic protozoa. Eukaryot Cell 3:245–254

    Article  PubMed  CAS  Google Scholar 

  • Liang P (2002) A decade of differential display. Biotechniques 33:338–344, 346

    PubMed  CAS  Google Scholar 

  • Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21:3269–3275

    Article  PubMed  CAS  Google Scholar 

  • Louzir H, Melby PC, Ben Salah A, Marrakchi H, Aoun K, Ben Ismail R, Dellagi K (1998) Immunologic determinants of disease evolution in localized cutaneous leishmaniasis due to Leishmania major. J Infect Dis 177:1687–1695

    Article  PubMed  CAS  Google Scholar 

  • Mottram JC, Brooks DR, Coombs GH (1998) Roles of cysteine proteinases of trypanosomes and Leishmania in host–parasite interactions. Curr Opin Microbiol 1:455–460

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Sen P, Majumder HK, Roy S (1998) Reduced expression of lipophosphoglycan (LPG) and kinetoplastid membrane protein (KMP)-11 in Leishmania donovani promastigotes in axenic culture. J Parasitol 84:644–647

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346:48–54

    Article  PubMed  CAS  Google Scholar 

  • Panepinto J, Liu L, Ramos J, Zhu X, Valyi-Nagy T, Eksi S, Fu J, Jaffe HA, Wickes B, Williamson PR (2005) The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans. J Clin Invest 115:632–641

    PubMed  CAS  Google Scholar 

  • Pohlmann J, Lampe T, Shimada M, Nell PG, Pernerstorfer J, Svenstrup N, Brunner NA, Schiffer G, Freiberg C (2005) Pyrrolidinedione derivatives as antibacterial agents with a novel mode of action. Bioorg Med Chem Lett 15:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241

    Article  PubMed  CAS  Google Scholar 

  • Sacks DL (2001) Leishmania-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3:189–196 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  • Spath GF, Beverley SM (2001) A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. Exp Parasitol 99:97–103

    Article  PubMed  CAS  Google Scholar 

  • Spath GF, Epstein L, Leader B, Singer SM, Avila HA, Turco SJ, Beverley SM (2000) Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 97:9258–9263

    Article  PubMed  CAS  Google Scholar 

  • Stober CB (2004) From genomes to vaccines for leishmaniasis. Methods Mol Biol 270:423–438

    PubMed  CAS  Google Scholar 

  • Sun Y, Hegamyer G, Colburn NH (1994) Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases−3. Cancer Res 54:1139–1144

    PubMed  CAS  Google Scholar 

  • Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262

    Article  PubMed  CAS  Google Scholar 

  • Teixeira MC, de Jesus Santos R, Sampaio RB, Pontes-de-Carvalho L, dos-Santos WL (2002) A simple and reproducible method to obtain large numbers of axenic amastigotes of different Leishmania species. Parasitol Res 88:963–968

    Article  PubMed  Google Scholar 

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  PubMed  CAS  Google Scholar 

  • Wan JS, Sharp SJ, Poirier GM, Wagaman PC, Chambers J, Pyati J, Hom YL, Galindo JE, Huvar A, Peterson PA, Jackson MR, Erlander MG (1996) Cloning differentially expressed mRNAs. Nat Biotechnol 14:1685–1691

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Gao D, Vaglenov A, Kaltenboeck B (2004) One-step real-time duplex reverse transcription PCRs simultaneously quantify analyte and housekeeping gene mRNAs. Biotechniques 36:508–516, 518–509

    PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (1997) Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc Natl Acad Sci U S A 94:8807–8811

    Article  PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (2004) In vivo selection for Leishmania donovani miniexon genes that increase virulence in Leishmania major. Mol Microbiol 54:1051–1062

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Ben Mamoun C (2006) Leishmania major expresses a single dihydroxyacetonephosphate acyltransferase localized in the glycosome, important for rapid growth and survival at high cell density and essential for virulence. J Biol Chem 281:7952–7959

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Meherzia Ben Fadhel for sequencing.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hechmi Louzir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouakad, M., Chenik, M., Ben Achour-Chenik, Y. et al. Gene expression analysis of wild Leishmania major isolates: identification of genes preferentially expressed in amastigotes. Parasitol Res 100, 255–264 (2007). https://doi.org/10.1007/s00436-006-0277-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-006-0277-x

Keywords

Navigation