Skip to main content
Log in

The pretectal nuclei in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus)

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We have examined the organization of the pretectal area in two monotremes (the short beaked echidna—Tachyglossus aculeatus, and the platypus—Ornithorhynchus anatinus) and compared it to that in the Wistar strain rat, using Nissl staining in conjunction with enzyme histochemistry (acetylcholinesterase and NADPH diaphorase) and immunohistochemistry for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody). We were able to identify distinct anterior, medial, posterior (now called tectal gray) and olivary pretectal nuclei as well as a nucleus of the optic tract, all with largely similar topographical and chemoarchitectonic features to the homologous regions in therian mammals. The positions of these pretectal nuclei correspond to the distributions of retinofugal terminals identified by other authors. The overall size of the pretectum in both monotremes was found to be at least comparable in size, if not larger than, the pretectum of representative therian mammals of similar brain and body size. Our findings suggest that the pretectum of these two monotreme species is comparable in both size and organization to that of eutherian mammals, and is more than just an undifferentiated area pretectalis. The presence of a differentiated pretectum with similar chemoarchitecture to therians in both living monotremes lends support to the idea that the stem mammal for both prototherian and therian lineages also had a differentiated pretectum. This in turn indicates that a differentiated pretectum appeared at least 125 million years ago in the mammalian lineage and that the stem mammal for proto- and eutherian lineages probably had similar pretectal nuclei to those identified in its descendants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbie AA (1934) The brainstem and cerebellum of Echidna aculeata. Philos Trans R Soc Lond B Biol Sci 224:1–74

    Article  Google Scholar 

  • Ashwell K, Hardman C, Paxinos G (2004) The claustrum is not missing from all monotreme brains. Brain Behav Evol 64:223–241

    Article  PubMed  Google Scholar 

  • Berman N (1977) Connections of the pretectum in the cat. J Comp Neurol 174:227–254

    Article  PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy. Evolution and adaptation. 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Caballero-Bleda M, Fernandez B, Puelles L (1992) The pretectal complex of the rabbit: distribution of acetylcholinesterase and reduced nicotinamide adenine dinucleotide diaphorase activities. Acta Anat 144:7–16

    Article  PubMed  CAS  Google Scholar 

  • Campbell CBG, Hayhow WR (1971) Primary optic pathways in the echidna, Tachyglossus aculeatus: an experimental degeneration study. J Comp Neurol 143:119–136

    Article  PubMed  CAS  Google Scholar 

  • Campbell CBG, Hayhow WR (1972) Primary optic pathways in the duckbill platypus Ornithorhynchus anatinus: an experimental degeneration study. J Comp Neurol 145:195–208

    Article  PubMed  CAS  Google Scholar 

  • Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH-diaphorase histochemistry. Neuroreport 5:2257–2260

    Article  PubMed  CAS  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci 35:375–475

    Article  CAS  Google Scholar 

  • Dávila JC, Guirado S, Puelles L (2000) Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus. J Comp Neurol 427:67–92

    Article  PubMed  Google Scholar 

  • DeLucchi MR, Dennis BJ, Adey WR (1965) A stereotaxic atlas of the chimpanzee brain. University of California, Los Angeles

    Google Scholar 

  • Franklin KB, Paxinos G (1997) The mouse brain in stereotaxic co-ordinates. Academic, San Diego

    Google Scholar 

  • Gates GR (1980) Vision in the monotreme anteater (Tachyglossus aculeatus). In: Augee ML (eds) Monotreme biology. Royal Zoological Society of NSW, Sydney, pp 147–169

    Google Scholar 

  • Griffiths M (1978) The biology of the monotremes. Academic, New York

    Google Scholar 

  • Hassiotis M, Paxinos G, Ashwell KWS (2004) Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. areal organization. J Comp Neurol 475:495–517

    Article  Google Scholar 

  • Hines M (1929) The brain of Ornithorhynchus anatinus. Phil Trans Royal Soc B Biol Sci 217:155–288

    Article  Google Scholar 

  • Ksiezak-Reding H, Dickson DW, Davies P, Yen SH (1987) Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc Natl Acad Sci USA 84:3410–3414

    Article  PubMed  CAS  Google Scholar 

  • Kusama T, Mabuchi M (1970) Stereotaxic atlas of the brain of Macaca fuscata. University of Tokyo, Tokyo

    Google Scholar 

  • Lee VM, Otvos L, Carden MJ, Hollosi M, Dietzschold B, Lazzarini RA (1988) Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 85:1998–2002

    Article  PubMed  CAS  Google Scholar 

  • Lim RKS, Liu C-N, Moffitt RL (1960) A stereotaxic atlas of the dog’s brain. Charles C Thomas, Springfield

    Google Scholar 

  • Mai JK, Assheuer J, Paxinos G (1997) Atlas of the human brain. Academic, San Diego

    Google Scholar 

  • Musser AM (2003) Review of the monotreme fossil record and comparison of paleontological and molecular data. Comp Biochem Physiol A Mol Integr Physiol 136:927–942

    Article  PubMed  CAS  Google Scholar 

  • Nabors LB, Mize RR (1991) A unique neuronal organization in the cat pretectum revealed by antibodies to the calcium-binding protein calbindin-D 28k. J Neurosci 11:2460–2476

    PubMed  CAS  Google Scholar 

  • Oswaldo-Cruz E, Rocha-Miranda CE (1968) The brain of the opossum (Didelphis marsupialis). Universidade Federal do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Paxinos G, Watson CRR (1986) The rat brain in stereotaxic co-ordinates. 2nd edn. Academic, San Diego

    Google Scholar 

  • Paxinos G, Watson CRR (2007) The rat brain in stereotaxic co-ordinates. 6th edn. Elsevier, San Diego

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson CR (1999a) Chemoarchitectonic atlas of the rat forebrain. Academic, San Diego

    Google Scholar 

  • Paxinos G, Carrive P, Wang Hongqin, Wang P-Y (1999b) Chemoarchitectonic atlas of the rat brainstem. Academic, San Diego

    Google Scholar 

  • Puelles L, Martinez-de-la-Torre S, Paxinos G, Watson CRR, Martinez M (2007) The chick brain in stereotaxic co-ordinates: an atlas correlating avian and mammalian neuroanatomy. Elsevier, San Diego (in press)

    Google Scholar 

  • Santana RF, Reiner A, Britto LRG, Toledo CAB (2003) Differential effects of aging on the distribution of calcium-binding proteins in a pretectal nucleus of the chicken brain. J Chem Neuroanat 26:195–208

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Buchwald P, Blumcke I, Celio MR, Hunziker W (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. Cell Calcium 14:639–648

    Article  PubMed  CAS  Google Scholar 

  • Sefton AJ, Dreher B, Harvey A (2004) Visual system. In: Paxinos G (eds) The rat nervous system. 3rd edn. Elsevier, San Diego, pp 1083–1165

    Google Scholar 

  • Simpson JI, Giolli RA, Blanks RHI (1988) The pretectal nuclear complex and the accessory optic system. Rev Oculomot Res 2:335–364

    PubMed  CAS  Google Scholar 

  • Snider RS, Niemer WT (1961) A stereotaxic atlas of the cat brain. University of Chicago, Chicago

    Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Wahle P, Reimann S (1997) Postnatal developmental changes of neurons expressing calcium-binding proteins and GAD mRNA in the pretectal nuclear complex of the cat. Dev Brain Res 99:72–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Craig Hardman, Dr. Maria Hassiotis, Dr. Luan ling Zhang and Dr. Hong qin Wang for their assistance with processing of the tissue used in the present study. This study was supported in part by a grant from the Australian Research Council (Grant No. A09917168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. S. Ashwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashwell, K.W.S., Paxinos, G. The pretectal nuclei in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus). Brain Struct Funct 212, 359–369 (2007). https://doi.org/10.1007/s00429-007-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0155-z

Keywords

Navigation