Skip to main content

Advertisement

Log in

Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Some plant species can increase the mass flow of water from the soil to the root surface in response to the appearance of nitrate in the rhizosphere by increasing root hydraulic conductivity. Such behavior can be seen as a powerful strategy to facilitate the uptake of nitrate in the patchy and dynamically changing soil environment. Despite the significance of such behavior, little is known about the dynamics and mechanism of this phenomenon. Here we examine root hydraulic response of nitrate starved Zea mays (L.) plants after a sudden exposure to 5 mM NO3 solution. In all cases the treatment resulted in a significant increase in pressure-induced (pressure gradient ~ 0.2 MPa) flow across the root system by ~50% within 4 h. Changes in osmotic gradient across the root were approximately 0.016 MPa (or 8.5%) and thus the results could only be explained by a true change in root hydraulic conductance. Anoxia treatment significantly reduced the effect of nitrate on xylem root hydraulic conductivity indicating an important role for aquaporins in this process. Despite a 1 h delay in the hydraulic response to nitrate treatment, we did not detect any change in the expression of six ZmPIP1 and seven ZmPIP2 genes, strongly suggesting that NO3 ions regulate root hydraulics at the protein level. Treatments with sodium tungstate (nitrate reductase inhibitor) aimed at resolving the information pathway regulating root hydraulic properties resulted in unexpected findings. Although this treatment blocked nitrate reductase activity and eliminated the nitrate-induced hydraulic response, it also produced changes in gene expression and nitrate uptake levels, precluding us from suggesting that nitrate acts on root hydraulic properties via the products of nitrate reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

NR:

Nitrate reductase

ZmPIP :

Zea mays plasma membrane intrinsic protein gene

FAD:

Flavin adenine dinucleotide

DTT:

Dithiothreitol

References

  • Amodeo G, Dorr R, Vallejo A, Sutka M, Parisi M (1999) Radial and axial water transport in the sugar beet storage root. J Exp Bot 50:509–516

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley-Interscience, London, p 384

  • Barthes L, Deleens E, Bousser A, Hoarau J, Prioul JL (1996) Xylem exudation is related to nitrate assimilation pathway in detopped maize seedlings: use of nitrate reductase and glutamine synthetase inhibitors as tools. J Exp Bot 47:485–495

    Article  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plant Anal 6:71–80

    CAS  Google Scholar 

  • Chapin FS, Walter CHS, Clarkson DT (1988) Growth-response of barley and tomato to nitrogen stress and its control by abscisic-acid, water relations and photosynthesis. Planta 173:352–366

    Article  CAS  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Ezeta FN, Jackson WA (1975) Nitrate translocation by detopped corn seedlings. Plant Physiol 56:148–156

    Article  PubMed  CAS  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Ann Rev Plant Biol 53:203–224

    Article  CAS  Google Scholar 

  • Gloser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415

    Article  PubMed  CAS  Google Scholar 

  • Gorska A, Qing Y, Holbrook NM, Zwieniecki MA (2008) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol (in press)

  • Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F (2006) Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol 62:305–323

    Article  PubMed  CAS  Google Scholar 

  • Henzler T, Steudle E (1994) Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane. J Exp Bot 46:199–209

    Article  Google Scholar 

  • Horau J, Barthes L, Bousser A, Deleens E, Prioul J-L (1996) Effect of nitrate on water transfer across roots of nitrogen pre-starved maize seedlings. Planta 200:405–415

    Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Jiang XY, Omarov RT, Yesbergenova SZ, Sagi M (2004) The effect of molybdate and tungstate in the growth medium on abscisic acid content and the Mo-hydroxylases activities in barley (Hordeum vulgare L.). Plant Science 167:297–304

    Article  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta Biomembr 1465:324–342

    Article  CAS  Google Scholar 

  • Kaiser WM, Kandlbinder A, Stoimenova M, Glaab J (2000) Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: What limits nitrate reduction in situ? Planta 210:801–807

    Article  PubMed  CAS  Google Scholar 

  • Lin WL, Peng YH, Li GW, Arora R, Tang ZC, Su WA, Cai WM (2007) Isolation and functional characterization of PgTIP1 a hormone-autotrophic cells-specific tonoplast aquaporin in ginseng. J Exp Bot 58:947–956

    Article  PubMed  CAS  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric-chloride on the hydraulic conductivity of tomato root systems—evidence for a channel-mediated water pathway. Plant Physiol 109:331–335

    PubMed  CAS  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, Nobel PS, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Martre P, North GB, Nobel PS (2001) Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting. Plant Physiol 126:352–362

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. Febs Lett 581:2227–2236

    Article  PubMed  CAS  Google Scholar 

  • Mendel RR, Hansch R (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 53:1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Porch TG, Tseung CW, Schmelz EA, Settles AM (2006) The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J 45:250–263

    Article  PubMed  CAS  Google Scholar 

  • Radin JW (1990) Responses of transpiration and hydraulic conductance to root temperature in nitrogen-deficient and phosphorus-deficient cotton seedlings. Plant Physiol 92:855–857

    PubMed  CAS  Google Scholar 

  • Radin JW, Matthews MA (1989) Water transport-properties of cortical-cells in roots of nitrogen-deficient and phosphorus-deficient cotton seedlings. Plant Physiol 89:264–268

    PubMed  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  PubMed  CAS  Google Scholar 

  • Schaller H (2003) The role of sterols in plant growth and development. Progress Lipid Res 42:163–175

    Article  CAS  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    PubMed  CAS  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: From cellular effects to function in plants. Plant Cell 14:869–876

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Murrmann M, Peterson CA (1993) Transport of water and solutes across maize roots modified by puncturing the endodermis: Further evidence for the composite transport model of the root. Plant Physiol 103:335–349

    PubMed  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  PubMed  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  PubMed  CAS  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed  CAS  Google Scholar 

  • Wray JL, Filner P (1970) Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem J 119:715–724

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Initiative of the USDA-CREES grant number 2005-35100-16057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej A. Zwieniecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorska, A., Zwieniecka, A., Michele Holbrook, N. et al. Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228, 989–998 (2008). https://doi.org/10.1007/s00425-008-0798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0798-x

Keywords

Navigation