Skip to main content
Log in

Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In many species, environmental stress reduces plant fertility. In Arabidopsis thaliana, a significant fraction of this reduction in plant fertility results from ovule abortion and embryo senescence. In this species, environmental conditions were identified that induced 94% of the developing ovules to either undergo stress-induced ovule abortion or embryo senescence (Sun et al. Plant Physiol 135:2358–2367, 2004). Following salt stress, physiological and anatomical changes were first detected in the female gametophyte of an aborting ovule. Two to four hours after a period of salt stress that induces most ovules to abort, the mitochondrial membrane potential dissipated. Subsequently, cells in the gametophyte accumulated reactive oxygen species, which are known to be molecules that promote programmed cell death (PCD). Because mitochondria often play an important role in PCD, these organelles were closely examined for changes in structure. Although the anatomy of mitochondria varied, reproducible changes in mitochondria structure were not observed. Nonetheless, other changes in ultrastructure were found. In some aborting gametophytes, concentric rings of endoplasmic reticulum were formed. In a fraction of the aborting ovules, cytoplasmic contents and organelles were invaginated into the vacuole. Even in cryofixed sections, many of these bodies appeared indistinct, which is consistent with the degradation of their contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CH2DCFDA:

5-(and-6)-carboxy-2′, 7′-dichlorodihydrofluorescein diacetate

ER:

endoplasmic reticulum

JC-1:

5,5′, 6,6′-tetrachloro-1, 1′, 3, 3′-tetraethyl-benzimidazolylcarbocyanine iodide

MMC:

Megaspore mother cell

PCD:

Programmed cell death

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

References

  • Andersen MN, Asch F, Wu Y, Jensen CR, Naested H, Mogensen VO, Koch KE (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol 130:591–604

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Bawa KS, Webb CJ (1984) Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patterns. Am J Bot 71:736–751

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and the environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Response to abiotic stress. In: Buchanan B, Gruissem W, Jones R (eds) Biochermistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1203

    Google Scholar 

  • Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Liu LF, Chen YR, Wu HK, Yu SM (1994) Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6:625–636

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davies DD, Kenworthy P, Mocquot B, Roberts K (1987) The effects of anoxia on the ultrastructure of pea roots. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Press, Oxford, pp 265–277

    Google Scholar 

  • Der Wilden WV, Herman EM, Chrispeels MJ (1980) Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci USA 77:428–432

    Article  PubMed  Google Scholar 

  • Dickinson HH, Andrews L (1977) The role of membrane-bound cytoplasmic inclusions during gametogenesis in Lilium longiflorum Thunb. Planta 134:229–240

    Article  CAS  Google Scholar 

  • Freudenberg K (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148:595–600

    Article  PubMed  CAS  Google Scholar 

  • Gibeaut DM, Hulett J, Cramer GR, Seemann JR (1997) Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol 115:317–319

    Article  PubMed  CAS  Google Scholar 

  • Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210

    Article  Google Scholar 

  • Gong F-C, Giddings TH, Meehl JB, Staehelin LA, Galbraith DW (1996) Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins. Proc Natl Acad Sci USA 93:2219–2223

    Article  PubMed  CAS  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097

    Article  PubMed  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    Article  PubMed  CAS  Google Scholar 

  • James F, Brouquisse R, Pradet A, Raymond P (1993) Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol Biochem 31:845–856

    CAS  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  PubMed  CAS  Google Scholar 

  • Kapil RN, Tiwari SC (1978) The integumentary tapetum. Bot Rev 44:457–490

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A–138A

    Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Kokubun M, Shimada S, Takahashi M (2001) Flower abortion caused by preanthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci 41:1517–1521

    Article  Google Scholar 

  • Kolb RM, Dolder H, Cortelazzo AL (2004) Effects of anoxia on root ultrastructure of four neotropical trees. Protoplasma 224:99–105

    PubMed  CAS  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kranz AR, Kirchheim B (1987) Handling of Arabidopsis. In: Kranz AR (ed) Arabidopsis information service, vol 24: Genetic resources in arabidopsis. Arabidopsis Information Service, Frankfurt, pp 4.1.1–4.2.7

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DG (1980) Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist 86:69–79

    Article  Google Scholar 

  • Mansfield SG, Briarty LG (1992) Cotyledon cell development in Arabidopsis thaliana during reserve formation. Can J Bot 70:151–164

    Article  Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Article  Google Scholar 

  • Melroy DL, Herman EM (1991) TIP, an integral membrane protein of the protein-storage vacuoles of the soybean cotyledon undergoes developmentally regulated membrane accumulation and removal. Planta 184:113–122

    Article  CAS  Google Scholar 

  • Miller ME, Chourey PS (1992) The maize invertase-deficient miniature1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4:297–305

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111:1233–1241

    PubMed  CAS  Google Scholar 

  • Morrisset C (1983) Effects of energetic shortage upon the ultrastructure of some organelles, in excised roots of Lycopersicon esculentum cultivated in vitro. I. Reversible modifications of the endoplasmic reticulum. Cytologia 48:348–362

    Google Scholar 

  • Moss GI, Downey LA (1971) Influence of drought stress on female gametophyte development in corn (Zea mays) and subsequent grain yield. Crop Sci 11:368–373

    Article  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Pimienta E, Polito VS (1982) Ovule abortion in ‘nonpareil’ almond [Prunus dulcis (Mill.) DA Webb]. Am J Bot 69:913–920

    Article  Google Scholar 

  • Pimienta E, Polito VS (1983) Embryo sac development in almond [Prunus dulcis (Mill.) DA Webb] as affected by cross-pollination, self-pollination, and non-pollination. Ann Bot 51:469–479

    Google Scholar 

  • Raju BM, Shaanker RU, Ganeshaiah KN (1996) Intra-fruit seed abortion in a wind dispersed tree, Dalbergia sissoo Roxb: proximate mechanisms. Sex Plant Reprod 9:273–278

    Article  Google Scholar 

  • Robards AW (1991) Freezing methods and their applications. In: Hall JL, Hawes C (eds) Electron microscopy of plant cells. Academic Press Inc., San Diego, pp 257–312

    Google Scholar 

  • Rodkiewicz B, Kwiatkowska M (1965) Enzymy hydrolityczne w rozwijajacym sie woreckzu zalazkowyn lilli. Acta Soc Bot Poloniae 34:235–242

    CAS  Google Scholar 

  • Rodkiewicz B, Mikulsa E (1965) The development of cytoplasmic structures in the embryo sac of Lilium candidum, as observed in the electron microscrope. Planta 67:297–304

    Article  Google Scholar 

  • Schulz P, Jensen WA (1981) Pre-fertilization ovule development in Casella: ultrastructure and ultracytochemical localization of acid phosphatase. Protoplasma 107:27–45

    Article  CAS  Google Scholar 

  • Smith MB, Palmer RG, Horner HT (2002) Microscopy of a cytoplasmic male-sterile soybean from an interspecific cross between Glycine max and G. soja (Leguminosae). Am J Bot 89:417–426

    Google Scholar 

  • Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:71–80

    Article  PubMed  CAS  Google Scholar 

  • Stephenson A (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279

    Article  Google Scholar 

  • Stephenson A (1992) The regulation of maternal investment in plants. In: Marshall C, Grace J (eds) Fruit and seed production: aspects of development, environmental physiology, and ecology. Cambridge University Press, New York, pp 151–171

    Google Scholar 

  • Sun K, Hunt K, Hauser BA (2004) Ovule abortion in Arabidopsis triggered by stress. Plant Physiol 135:2358–2367

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Takeda H, Tsukaguchi T, Egawa Y (2001) Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sex Plant Reprod 13:293–299

    Article  Google Scholar 

  • Wagner D, Przybyla D, Op Den Camp R, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, et al (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306:1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Webb MC, Gunning BES (1990) Embryo sac development in Arabidopsis thaliana. 1. Megasporogenesis, including the microtubular cytoskeleton. Sex Plant Reprod 3:244–256

    Article  Google Scholar 

  • Wittenbach VA, Lin W, Hebert RR (1982) Vacuolar localization of proteases and degradation of chloroplast mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69:98–102

    PubMed  CAS  Google Scholar 

  • Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from a maize invertase gene family. Plant Cell 8:1209–1220

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol 122:1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8 s, ubiquitin-like proteins, and their deconjugation by ATG4 s are essential for plant autophagy. Plant Cell 16:2967–2983

    Article  PubMed  CAS  Google Scholar 

  • Zinselmeier C, Jeong B-R, Boyer JS (1999) Starch and the control of kernel number in maize at low water potentials. Plant Physiol 121:25–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Greg Erdos and Karen Kelley for assistance with electron microscopy, and Margaret Joyner and anonymous reviewers for helpful comments. The National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (grant number 2002-35100-12109), and the UF Alumni Fellowship Program supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard A. Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, B.A., Sun, K., Oppenheimer, D.G. et al. Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion. Planta 223, 492–499 (2006). https://doi.org/10.1007/s00425-005-0107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0107-x

Keywords

Navigation