Skip to main content
Log in

Pharmacological and biophysical properties of Ca2+ channels and subtype distributions in human adrenal chromaffin cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In this study, we explored the pharmacological and biophysical properties of voltage-activated Ca2+ channels in human chromaffin cells using the perforated-patch configuration of the patch-clamp technique. According to their pharmacological sensitivity to Ca2+ channel blockers, cells could be sorted into two groups of similar size showing the predominance of either N- or P/Q-type Ca2+ channels. R-type Ca2+ channels, blocked by 77% with 20 μM Cd2+ and not affected by 50 μM Ni2+, were detected for the first time in human chromaffin cells. Immunocytochemical experiments revealed an even distribution of α 1E Ca2+ channels in these cells. With regard to their biophysical properties, L- and R-type channels were activated at membrane potentials that were 15–20 mV more negative than P/Q- and N-type channels. Activation time constants showed no variation with voltage for the L-type channels, decreased with increasing potentials for the R- and P/Q-type channels, and displayed a bell shape with a maximum at 0 mV for the N-type channels. R-type channels were also the most inactivated channels. We thus show here that human chromaffin cells possess all the Ca2+ channel types described in neurons, L, N, P/Q, and R channels, but the relative contributions of N and P/Q channels differ among cells. Given that N- and P/Q-type Ca2+ channel types can be differentially modulated, these findings suggest the possibility of cell-specific regulation in human chromaffin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pérez-Alvarez A, Albillos A (2007) Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells. J Neurochem 103:2281–2290

    Article  PubMed  Google Scholar 

  2. Mintz IM, Venema VJ, Swiderek K, Lee T, Bean BP, Adams ME (1992) P-type calcium channels blocked by the spider toxin w-Aga-IVA. Nature 355:827–829

    Article  PubMed  CAS  Google Scholar 

  3. Sather WA, Tanabe T, Zhang JF, Mori Y, Adams ME, Tsien RW (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel alpha 1 subunits. Neuron 11:291–303

    Article  PubMed  CAS  Google Scholar 

  4. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar neurons. J Neurosci 15:2995–3012

    PubMed  CAS  Google Scholar 

  5. Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacol 32:1075–1088

    Article  CAS  Google Scholar 

  6. Tottene A, Moretti A, Pietrobon D (1996) Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J Neurosci 16:6353–6363

    PubMed  CAS  Google Scholar 

  7. Magnelli V, Baldelli P, Carbone E (1998) Antagonists-resistant calcium currents in rat embryo motoneurons. Eur J Neurosci 10:1810–1825

    Article  PubMed  CAS  Google Scholar 

  8. Hoshi T, Smith SJ (1987) Large depolarization induces long openings of voltage-dependent calcium channels in adrenal chromaffin cells. J Neurosci 7:571–580

    PubMed  CAS  Google Scholar 

  9. Bossu JL, De Waard M, Feltz A (1991) Inactivation characteristics reveal two calcium currents in adult bovine chromaffin cells. J Physiol 437:603–620

    PubMed  CAS  Google Scholar 

  10. Albillos A, Artalejo AR, López MG, Gandía L, García AG, Carbone E (1994) Ca2+ channel subtypes in cat chromaffin cells. J Physiol 477:197–213

    PubMed  CAS  Google Scholar 

  11. Hans M, Illes P, Takeda K (1990) The blocking effects of omega-conotoxin on Ca current in bovine chromaffin cells. Neurosci Lett 114:63–68

    Article  PubMed  CAS  Google Scholar 

  12. Bossu JL, De Waard M, Feltz A (1991) Two types of calcium channels are expressed in adult bovine chromaffin cells. J Physiol 437:621–634

    PubMed  CAS  Google Scholar 

  13. Artalejo CR, Perlman RL, Fox AP (1992) w-Conotoxin GVIA blocks a Ca2+ current in chromaffin cells that is not of the “classic” N Type. Neuron 8:85–95

    Article  PubMed  CAS  Google Scholar 

  14. Albillos A, García AG, Gandía L (1993) w-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett 336:259–262

    Article  PubMed  CAS  Google Scholar 

  15. Albillos A, García AG, Olivera B, Gandía L (1996) Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Pflügers Arch Eur J Physiol 432:1030–1038

    Article  CAS  Google Scholar 

  16. Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76

    Article  PubMed  CAS  Google Scholar 

  17. Gandía L, Borges R, Albillos A, García AG (1995) Multiple types of calcium channels are present in rat chromaffin cells. Pflügers Arch Eur J Physiol 430:55–63

    Article  Google Scholar 

  18. Hernández-Guijo JM, de Pascual R, García AG, Gandía L (1998) Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Pflügers Arch Eur J Physiol 436:696–704

    Article  Google Scholar 

  19. Albillos A, Neher E, Moser T (2000) R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20:8323–8330

    PubMed  CAS  Google Scholar 

  20. Aldea M, Jun K, Shin H, Andrés-Mateos E, Solís-Garrido L, Montiel C, García AG, Albillos A (2002) A perforated patch-clamp study of calcium currents and secretion in mouse chromaffin cells of wild-type and a 1A knockout mice. J Neurochem 81:911–921

    Article  PubMed  CAS  Google Scholar 

  21. Kitamura N, Ohta T, Ito S, Nakazato Y (1997) Calcium channels subtypes in porcine adrenal chromaffin cells. Pflügers Arch Eur J Physiol 434:179–187

    Article  CAS  Google Scholar 

  22. Gandía L, Mayorgas I, Michelena P, Cuchillo I, de Pascual R, Abad F, Novalbos JM, Larrañaga E, García AG (1998) Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflügers Arch Eur J Physiol 436:696–704

    Article  Google Scholar 

  23. Lomax RB, Michelena P, Núñez L, García-Sancho J, García AG, Montiel C (1997) Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am J Physiol 272:C476–484

    PubMed  CAS  Google Scholar 

  24. Gandía L, García AG, Morad M (1993) ATP modulation of calcium channels in chromaffin cells. J Physiol 470:55–72

    PubMed  Google Scholar 

  25. Albillos A, Carbone E, Gandía L, García AG, Pollo A (1996) Opioids inhibition of Ca2+ channel subtypes in bovine chromaffin cells: selectivity of action and voltage-dependence. Eur J Neurosci 8:1561–1570

    Article  PubMed  CAS  Google Scholar 

  26. Albillos A, Gandía L, Michelena P, Gilabert JA, Valle M, Carbone E, García AG (1996) The mechanism of calcium channel facilitation in bovine chromaffin cells. J Physiol 494:687–695

    PubMed  CAS  Google Scholar 

  27. Currie KP, Fox AP (1996) ATP serves as a negative feedback inhibitor of voltage-gated Ca2+ channel currents in cultured bovine adrenal chromaffin cells. Neuron 16:1027–1036

    Article  PubMed  CAS  Google Scholar 

  28. Carabelli V, Carra I, Carbone E (1998) Localized secretion of ATP and opioids revealed through single Ca2+ channel modulation in bovine chromaffin cells. Neuron 20:1255–1268

    Article  PubMed  CAS  Google Scholar 

  29. Currie KP, Fox AP (1997) Comparison of N- and P/Q-type voltage-gated calcium channel current inhibition. J Neurosci 17:4570–4579

    PubMed  CAS  Google Scholar 

  30. Currie KP, Fox AP (2002) Differential facilitation of N- and P/Q-type calcium channels during trains of action potential-like waveforms. J Physiol 539:419–431

    Article  PubMed  CAS  Google Scholar 

  31. Wykes RC, Bauer CS, Khan SU, Weiss JL, Seward EP (2007) Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. J Neurosci 9:5236–5248

    Article  Google Scholar 

  32. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502

    Article  PubMed  CAS  Google Scholar 

  33. Randall AD, Tsien RW (1997) Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology 36:879–893

    Article  PubMed  CAS  Google Scholar 

  34. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    Article  PubMed  CAS  Google Scholar 

  35. Novara M, Baldelli P, Cavallari D, Carabelli V, Giancippoli A, Carbone E (2004) Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins. J Physiol 558:433–449

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong CM, Matteson DR (1985) Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67

    Article  PubMed  CAS  Google Scholar 

  37. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol 331:599–635

    PubMed  CAS  Google Scholar 

  38. Luebke JI, Dunlap K, Turner TJ (1993) Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 11:895–902

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi T, Momiyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366:156–158

    Article  PubMed  CAS  Google Scholar 

  40. Regehr WG, Mintz IM (1994) Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron 12:605–613

    Article  PubMed  CAS  Google Scholar 

  41. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111

    Article  PubMed  CAS  Google Scholar 

  42. Reuter H (1995) Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca(2+)-channel blockers. Neuron 14:773–779

    Article  PubMed  CAS  Google Scholar 

  43. Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472

    Article  PubMed  CAS  Google Scholar 

  44. Reid CA, Clements JD, Bekkers JM (1997) Nonuniform distribution of Ca2+ channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures. J Neurosci 17:2738–2745

    PubMed  CAS  Google Scholar 

  45. Millán C, Lujan R, Shigemoto R, Sánchez-Prieto J (2002) Subtype-specific expression of group III metabotropic glutamate receptors and Ca2+ channels in single nerve terminals. J Biol Chem 277:47796–47803

    Article  PubMed  Google Scholar 

  46. Millán C, Castro E, Torres M, Shigemoto R, Sánchez-Prieto J (2003) Co-expression of metabotropic glutamate receptor 7 and N-type Ca2+ channels in single cerebrocortical nerve terminals of adult rats. J Biol Chem 278:23955–23962

    Article  PubMed  Google Scholar 

  47. Miyazaki K, Ishizuka T, Yawo H (2005) Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus. Neuroscience 136:1003–1014

    Article  PubMed  CAS  Google Scholar 

  48. Mogul DJ, Adams ME, Fox AP (1993) Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca2+ current in hippocampal CA3 neurons. Neuron 10:327–334

    Article  PubMed  CAS  Google Scholar 

  49. Wu LG, Saggau P (1994) Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J Neurosci 14:5613–5622

    PubMed  CAS  Google Scholar 

  50. Tsien RW, Lipscombe D, Madison D, Bley K, Fox A (1995) Reflections on Ca(2+)-channel diversity, 1988–1994. Trends Neurosci 18:52–54

    Article  PubMed  CAS  Google Scholar 

  51. Scholz KP, Miller RJ (1996) Presynaptic inhibition at excitatory hippocampal synapses: development and role of presynaptic Ca2+ channels. J Neurophysiol 76:39–46

    PubMed  CAS  Google Scholar 

  52. Goldstein M, Fuxe K, Hokfelt T, Joh TH (1971) Immunohistochemical studies on phenylethanolamine-N-methyltransferase, dopa-decarboxylase and dopamine-b-hydroxylase. Experientia 27:951–952

    Article  PubMed  CAS  Google Scholar 

  53. García-Palomero E, Renart J, Andrés-Mateos E, Solís-Garrido LM, Matute C, Herrero CJ, García AG, Montiel C (2001) Differential expression of calcium channel subtypes in the bovine adrenal medulla. Neuroendocrinology 74:251–261

    Article  PubMed  Google Scholar 

  54. Garber AJ, Cryer PE, Santiago JV, Haymond MW, Pagliara AS, Kipnis DM (1976) The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man. J Clin Invest 58:7–15

    Article  PubMed  CAS  Google Scholar 

  55. Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444

    PubMed  CAS  Google Scholar 

  56. Shah SD, Tse TF, Clutter WE, Cryer PE (1984) The human sympathochromaffin system. Am J Physiol 247:E380–384

    PubMed  CAS  Google Scholar 

  57. Young JB, Rosa RM, Landsberg L (1984) Dissociation of sympathetic nervous system and adrenal medullary responses. Am J Physiol 247:E35–40

    PubMed  CAS  Google Scholar 

  58. Takiyyuddin MA, Cervenka JH, Sullivan PA, Pandian MR, Parmer RJ, Barbosa JA, O'Connor DT (1990) Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Circulation 81:185–195

    PubMed  CAS  Google Scholar 

  59. Takiyyuddin MA, Brown MR, Dinh TQ, Cervenka JH, Braun SD, Parmer RJ, Kennedy B, O'Connor DT (1994) Sympatho-adrenal secretion in humans: factors governing catecholamine and storage vesicle peptide co-release. J Auton Pharmacol 14:187–200

    Article  PubMed  CAS  Google Scholar 

  60. Cavadas C, Silva AP, Mosimann F, Cotrim MD, Ribeiro CA, Brunner HR, Grouzmann E (2001) NPY regulates catecholamine secretion from human adrenal chromaffin cells. J Clin Endocrinol Metab 86:5956–5963

    Article  PubMed  CAS  Google Scholar 

  61. Wilk S (1986) Tissue analysis. In: Krstulovic AM (ed) Quantitative analysis of catecholamines and related compounds. Wiley, London

    Google Scholar 

  62. Williams ME, Marubio LM, Deal CR, Hans M, Brust P, Philipson LH, Miller RJ, Johnson EC, Harpold MM, Ellis SB (1994) Structure and functional characterization of neuronal alpha 1E calcium channel subtypes. J Biol Chem 269:22347–22357

    PubMed  CAS  Google Scholar 

  63. Magnelli V, Baldelli P, Carbone E (1998) Antagonists-resistant calcium currents in rat embryo motoneurons. Eur J Neurosci 10:1810–1825

    Article  PubMed  CAS  Google Scholar 

  64. Jouvenceau A, Giovannini F, Bath CP, Trotman E, Sher E (2000) Inactivation properties of human recombinant class E calcium channels. J Neurophysiol 83:671–684

    PubMed  CAS  Google Scholar 

  65. Polo-Parada L, Chan SA, Smith C (2006) An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells. Neuroscience 143:445–459

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the donors of the human adrenal glands and their relatives. We also thank Dr. Agustín Albillos and the Transplant Team of the Hospital Ramón y Cajal for their excellent coordination in supplying human adrenal glands. We are also grateful to Dr. Emilio Carbone for helpful discussions. APA holds a fellowship award from the Comunidad Autónoma de Madrid. This work was supported by grants from the Ministerio de Ciencia y Tecnología No. BFU2005-00743/BFI, and the Comunidad Autónoma de Madrid and Universidad Autónoma de Madrid No. 11/BCB/003 awarded to AA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena Albillos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Alvarez, A., Hernández-Vivanco, A., Cano-Abad, M. et al. Pharmacological and biophysical properties of Ca2+ channels and subtype distributions in human adrenal chromaffin cells. Pflugers Arch - Eur J Physiol 456, 1149–1162 (2008). https://doi.org/10.1007/s00424-008-0492-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0492-7

Keywords

Navigation