Skip to main content

Advertisement

Log in

Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We previously reported that hydrogen sulfide (H2S) preconditioning (SP) produces cardioprotective effects against ischemia in rat cardiac myocytes. The present study aims to elucidate the signaling mechanisms involved in SP-induced cardioprotection by investigating the role of extracellular signal regulated kinase (ERK1/2) and phosphatidylinositol 3-kinase (PI3K)/Akt. We found that preconditioning with NaHS (a H2S donor) for three cycles significantly decreased myocardial infarct size and improved heart contractile function in the isolated rat hearts. NaHS (1–100 μM) concentration-dependently increased cell viability and percentage of rod-shaped cardiac myocytes. Blockade of ERK1/2 with PD 98059 or PI3K/Akt with LY-294002 or Akt inhibitor III during either preconditioning or ischemia periods significantly attenuated the cardioprotection of SP, suggesting that both ERK1/2 and PI3K/Akt triggered and mediated the cardioprotection of SP. Moreover, SP induced ERK1/2 and Akt phosphorylation in isolated hearts. The phosphorylation of ERK1/2 induced by SP was attenuated by either glibenclamide, an ATP-sensitive K+ channel (KATP) blocker, or chelerythrine, a specific protein kinase C (PKC) blocker. In addition, ischemic-preconditioning-induced ERK1/2 activation was reversed by inhibiting endogenous H2S production, suggesting that ERK1/2 activation induced by ischemic preconditioning was, at least partly, mediated by endogenous H2S. In conclusion, KATP/PKC/ERK1/2 and PI3K/Akt pathways contributed to SP-induced cardioprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2-DOG:

2-deoxy-d-glucose

Akt-i:

Akt inhibitor III

BCA:

β-cyano-l-alanine

Che:

chelerythrine

CO:

carbon monoxide

CSE:

cystathionine γ-lyase

DMSO:

dimethyl sulphoxide

ERK:

extracellular signal regulated kinase

H2S:

hydrogen sulfide

IP:

ischemic preconditioning

JNK:

c-Jun NH2-terminal kinases

KATP :

ATP-sensitive K+ channel

LAD:

left anterior descending coronary artery

MAPK:

mitogen-activated protein kinase

MEK:

MAPK/ERK kinase, or MAP kinase kinase

Na2S2O4 :

sodium dithionite

NaHS:

sodium hydrogen sulfide

NO:

nitric oxide

PAG:

dl-propargylglycine

PI3K:

phospatidylinositol 3-kinase

PKC:

protein kinase C

SP:

NaHS preconditioning

TTC:

triphenyl tetrazolium chloride

VP:

vehicle preconditioning group

References

  1. Armstrong SC (2004) Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 61:427–436

    Article  PubMed  CAS  Google Scholar 

  2. Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 90:390–397

    Article  PubMed  CAS  Google Scholar 

  3. Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  5. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  CAS  Google Scholar 

  6. Dombkowski RA, Russell MJ, Olson KR (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286:R678–R685

    PubMed  CAS  Google Scholar 

  7. Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M, Adler Y (2004) Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172:201–210

    Article  PubMed  CAS  Google Scholar 

  8. Gao Y, Wang Y, Shan YQ, Pan MX (2003) PKC-dependent activation of P44/42 MAPKs and HSP70 in signal transduction pathways during hepatocyte ischemic preconditioning. Zhonghua Yi Xue Za Zhi 83:242–246

    PubMed  CAS  Google Scholar 

  9. Gaudette GR, Krukenkamp IB, Saltman AE, Horimoto H, Levitsky S (2000) Preconditioning with PKC and the ATP-sensitive potassium channels: a codependent relationship. Ann Thorac Surg 70:602–608

    Article  PubMed  CAS  Google Scholar 

  10. Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C (2004) H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313:362–368

    Article  PubMed  CAS  Google Scholar 

  11. Gordon JM, Dusting GJ, Woodman OL, Ritchie RH (2003) Cardioprotective action of CRF peptide urocortin against simulated ischemia in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 284:H330–H336

    PubMed  CAS  Google Scholar 

  12. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 285:H921–H930

    PubMed  CAS  Google Scholar 

  13. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976

    Article  PubMed  CAS  Google Scholar 

  14. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460

    Article  PubMed  CAS  Google Scholar 

  15. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253

    Article  PubMed  CAS  Google Scholar 

  16. Heidkamp MC, Bayer AL, Martin JL, Samarel AM (2001) Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C epsilon and delta in neonatal rat ventricular myocytes. Circ Res 89:882–890

    Article  PubMed  CAS  Google Scholar 

  17. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  PubMed  CAS  Google Scholar 

  18. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL (2003) ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol 284:H299–H308

    PubMed  CAS  Google Scholar 

  19. Liang BT (1998) Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem J 336(Pt 2):337–343

    PubMed  CAS  Google Scholar 

  20. Light PE, Kanji HD, Fox JE, French RJ (2001) Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. Faseb J 15:2586–2594

    Article  PubMed  CAS  Google Scholar 

  21. Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, Das DK (1996) Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett 396:233–237

    Article  PubMed  CAS  Google Scholar 

  22. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    PubMed  CAS  Google Scholar 

  23. Naitoh K, Ichikawa Y, Miura T, Nakamura Y, Miki T, Ikeda Y, Kobayashi H, Nishihara M, Ohori K, Shimamoto K (2006) MitoK(ATP) channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovasc Res 70:374–383

    Article  PubMed  CAS  Google Scholar 

  24. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119

    Article  PubMed  CAS  Google Scholar 

  25. Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  PubMed  CAS  Google Scholar 

  26. Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40:119–130

    Article  PubMed  CAS  Google Scholar 

  27. Ping P, Zhang J, Cao X, Li RC, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R (1999) PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol 276:H1468–H1481

    PubMed  CAS  Google Scholar 

  28. Sivarajah A, McDonald MC, Thiemermann C (2006) The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26:154–161

    Article  PubMed  CAS  Google Scholar 

  29. Toma O, Weber NC, Wolter JI, Obal D, Preckel B, Schlack W (2004) Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo. Anesthesiology 101:1372–1380

    Article  PubMed  CAS  Google Scholar 

  30. Yang G, Sun X, Wang R (2004) Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. Faseb J 18:1782–1784

    PubMed  CAS  Google Scholar 

  31. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    PubMed  CAS  Google Scholar 

  32. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    PubMed  CAS  Google Scholar 

  33. Zhao W, Ndisang JF, Wang R (2003a) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853

    Article  PubMed  CAS  Google Scholar 

  34. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  35. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003b) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    PubMed  CAS  Google Scholar 

  36. Wu S, Li HY, Wong TM (1999) Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of κ-opioid receptor. Circ Res 84:1388–1395

    Google Scholar 

Download references

Acknowledgments

The authors thank National University of Singapore, Office of Life Sciences (R184000074712) and National Medical Research Council grant (R184000132213) for their generous research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Bian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Chen, X., Pan, TT. et al. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Pflugers Arch - Eur J Physiol 455, 607–616 (2008). https://doi.org/10.1007/s00424-007-0321-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0321-4

Keywords

Navigation