Skip to main content

Advertisement

Log in

Mitochondria and Ca2+ signaling: old guests, new functions

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mitochondria are ancient endosymbiotic guests that joined the cells in the evolution of complex life. While the unique ability of mitochondria to produce adenosine triphosphate (ATP) and their contribution to cellular nutrition metabolism received condign attention, our understanding of the organelle’s contribution to Ca2+ homeostasis was restricted to serve as passive Ca2+ sinks that accumulate Ca2+ along the organelle’s negative membrane potential. This paradigm has changed radically. Nowadays, mitochondria are known to respond to environmental Ca2+ and to contribute actively to the regulation of spatial and temporal patterns of intracellular Ca2+ signaling. Accordingly, mitochondria contribute to many signal transduction pathways and are actively involved in the maintenance of capacitative Ca2+ entry, the accomplishment of Ca2+ refilling of the endoplasmic reticulum and Ca2+-dependent protein folding. Mitochondrial Ca2+ homeostasis is complex and regulated by numerous, so far, genetically unidentified Ca2+ channels, pumps and exchangers that concertedly accomplish the organelle’s Ca2+ demand. Notably, mitochondrial Ca2+ homeostasis and functions are crucially influenced by the organelle’s structural organization and motility that, in turn, is controlled by matrix/cytosolic Ca2+. This review intends to provide a condensed overview on the molecular mechanisms of mitochondrial Ca2+ homeostasis (uptake, buffering and storage, extrusion), its modulation by other ions, kinases and small molecules, and its contribution to cellular processes as fundamental basis for the organelle’s contribution to signaling pathways. Hence, emphasis is given to the structure-to-function and mobility-to-function relationship of the mitochondria and, thereby, bridging our most recent knowledge on mitochondria with the best-established mitochondrial function: metabolism and ATP production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alirol E, Martinou JC (2006) Mitochondria and cancer: is there a morphological connection? Oncogene 25:4706–4716

    PubMed  CAS  Google Scholar 

  2. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    CAS  Google Scholar 

  3. Ardehali H, Chen Z, Ko Y, Mejia-Alvarez R, Marban E (2004) Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA 101:11880–11885

    PubMed  CAS  Google Scholar 

  4. Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234

    PubMed  CAS  Google Scholar 

  5. Arnaudeau S, Kelley WL, Walsh JV Jr, Demaurex N (2001) Mitochondria recycle Ca2+ to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem 276:29430–29439

    PubMed  CAS  Google Scholar 

  6. Ayub K, Hallett MB (2004) The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. Faseb J 18:1335–1338

    PubMed  CAS  Google Scholar 

  7. Azarashvili T, Krestinina O, Odinokova I, Evtodienko Y, Reiser G (2003) Physiological Ca2+ level and Ca2+-induced Permeability Transition Pore control protein phosphorylation in rat brain mitochondria. Cell Calcium 34:253–259

    PubMed  CAS  Google Scholar 

  8. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136:833–844

    PubMed  CAS  Google Scholar 

  9. Babcock DF, Hille B (1998) Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol 8:398–404

    PubMed  CAS  Google Scholar 

  10. Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31:347–366

    PubMed  CAS  Google Scholar 

  11. Baron KT, Thayer SA (1997) CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol 340:295–300

    PubMed  CAS  Google Scholar 

  12. Bathori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G (2006) Ca2+-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 281:17347–17358

    PubMed  CAS  Google Scholar 

  13. Belous AE, Jones CM, Wakata A, Knox CD, Nicoud IB, Pierce J, Chari RS (2006) Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J Cell Biochem 22:1165–1174

    Google Scholar 

  14. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    PubMed  CAS  Google Scholar 

  15. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  16. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    PubMed  CAS  Google Scholar 

  17. Bertram R, Gram Pedersen M, Luciani DS, Sherman A (2006) A simplified model for mitochondrial ATP production. J Theor Biol 243:575–586

    PubMed  CAS  Google Scholar 

  18. Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276:21482–21488

    PubMed  CAS  Google Scholar 

  19. Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717:1–10 (Epub 2005 Oct 2011)

    PubMed  CAS  Google Scholar 

  20. Boitier E, Rea R, Duchen MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145:795–808

    PubMed  CAS  Google Scholar 

  21. Boneh A (2006) Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms. Cell Mol Life Sci 63:1236–1248

    PubMed  CAS  Google Scholar 

  22. Bootman MD, Petersen OH, Verkhratsky A (2002) The endoplasmic reticulum is a focal point for co-ordination of cellular activity. Cell Calcium 32:231–234

    PubMed  CAS  Google Scholar 

  23. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15:706–716

    PubMed  CAS  Google Scholar 

  24. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  25. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    PubMed  CAS  Google Scholar 

  26. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    PubMed  CAS  Google Scholar 

  27. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127

    PubMed  CAS  Google Scholar 

  28. Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ (2006) Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 72:313–321

    PubMed  CAS  Google Scholar 

  29. Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem 281:11658–11668

    PubMed  CAS  Google Scholar 

  30. Brustovetsky T, Shalbuyeva N, Brustovetsky N (2005) Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J Physiol 568:47–59

    PubMed  CAS  Google Scholar 

  31. Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062-19070

    PubMed  CAS  Google Scholar 

  32. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    PubMed  CAS  Google Scholar 

  33. Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP (2006) Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 281:37391–37403

    PubMed  CAS  Google Scholar 

  34. Chen Q, Lin RY, Rubin CS (1997) Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem 272:15247–15257

    PubMed  CAS  Google Scholar 

  35. Cheranov SY, Jaggar JH (2004) Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 556:755–771

    PubMed  CAS  Google Scholar 

  36. Chinopoulos C, Adam-Vizi V (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. Febs J 273:433–450

    PubMed  CAS  Google Scholar 

  37. Coatesworth W, Bolsover S (2006) Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones. Cell Calcium 39:217–225 (Epub 2005 Dec 2009)

    PubMed  CAS  Google Scholar 

  38. Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627

    PubMed  CAS  Google Scholar 

  39. Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem 276:26411–26420

    PubMed  CAS  Google Scholar 

  40. Crompton M, Andreeva L (1994) On the interactions of Ca2+ and cyclosporin A with a mitochondrial inner membrane pore: a study using cobaltammine complex inhibitors of the Ca2+ uniporter. Biochem J 302:181–185

    PubMed  CAS  Google Scholar 

  41. Crompton M, Kunzi M, Carafoli E (1977) The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium–calcium carrier. Eur J Biochem 79:549–558

    PubMed  CAS  Google Scholar 

  42. Csordas G, Madesh M, Antonsson B, Hajnoczky G (2002) tcBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane. EMBO J 21:2198–2206

    PubMed  CAS  Google Scholar 

  43. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnoczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    PubMed  CAS  Google Scholar 

  44. Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    PubMed  CAS  Google Scholar 

  45. de Meis L, Arruda AP, da Costa RM, Benchimol M (2006) Identification of a Ca2+-ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and Ca2+. J Biol Chem 281:16384–16390

    PubMed  Google Scholar 

  46. Dejean L, Camara Y, Sibille B, Solanes G, Villarroya F (2004) Uncoupling protein-3 sensitizes cells to mitochondrial-dependent stimulus of apoptosis. J Cell Physiol 201:294–304

    PubMed  CAS  Google Scholar 

  47. Del Arco A, Satrustegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279:24701–24713

    PubMed  Google Scholar 

  48. Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300:65–67

    PubMed  CAS  Google Scholar 

  49. Dhalla NS (1969) Excitation–contraction coupling in heart. I. Comparison of calcium uptake by the sarcoplasmic reticulum and mitochondria of the rat heart. Arch Int Physiol Biochim 77:916–934

    PubMed  CAS  Google Scholar 

  50. Dlaskova A, Spacek T, Skobisova E, Santorova J, Jezek P (2006) Certain aspects of uncoupling due to mitochondrial uncoupling proteins in vitro and in vivo. Biochim Biophys Acta 1757:467–473

    PubMed  CAS  Google Scholar 

  51. Drose S, Brandt U, Hanley PJ (2006) K+-independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem 281:23733–23739

    PubMed  Google Scholar 

  52. Duchen MR (1992) Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283:41–50

    PubMed  CAS  Google Scholar 

  53. Duchen MR (1999) Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol 516:1–17

    PubMed  CAS  Google Scholar 

  54. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68

    PubMed  CAS  Google Scholar 

  55. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    PubMed  CAS  Google Scholar 

  56. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53:S96–S102

    PubMed  CAS  Google Scholar 

  57. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 63:584–591

    Article  PubMed  CAS  Google Scholar 

  58. Eder P, Poteser M, Romanin C, Groschner K (2005) Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch 451:99–104

    PubMed  CAS  Google Scholar 

  59. Er E, Oliver L, Cartron PF, Juin P, Manon S, Vallette FM (2006) Mitochondria as the target of the pro-apoptotic protein Bax. Biochim Biophys Acta 1757:1301–1311

    PubMed  CAS  Google Scholar 

  60. Erlanson-Albertsson C (2002) Uncoupling proteins—a new family of proteins with unknown function. Nutr Neurosci 5:1–11

    PubMed  CAS  Google Scholar 

  61. Evtodienko YV (2000) Sustained oscillations of transmembrane Ca2+ fluxes in mitochondria and their possible biological significance. Membr Cell Biol 14:1–17

    PubMed  CAS  Google Scholar 

  62. Falcke M, Hudson JL, Camacho P, Lechleiter JD (1999) Impact of mitochondrial Ca2+ cycling on pattern formation and stability. Biophys J 77:37–44

    PubMed  CAS  Google Scholar 

  63. Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 31:31

    Google Scholar 

  64. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    PubMed  CAS  Google Scholar 

  65. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca2+ homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714

    PubMed  CAS  Google Scholar 

  66. Garlid KD (1980) On the mechanism of regulation of the mitochondrial K+/H+ exchanger. J Biol Chem 255:11273–11279

    PubMed  CAS  Google Scholar 

  67. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082

    PubMed  CAS  Google Scholar 

  68. Gerasimenko OV, Gerasimenko JV, Rizzuto RR, Treiman M, Tepikin AV, Petersen OH (2002) The distribution of the endoplasmic reticulum in living pancreatic acinar cells. Cell Calcium 32:261–268

    PubMed  CAS  Google Scholar 

  69. Gilabert JA, Bakowski D, Parekh AB (2001) Energized mitochondria increase the dynamic range over which inositol 1,4,5-trisphosphate activates store-operated calcium influx. EMBO J 20:2672–2679

    PubMed  CAS  Google Scholar 

  70. Gilabert JA, Parekh AB (2000) Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2+ current ICRAC. EMBO J 19:6401–6407

    PubMed  CAS  Google Scholar 

  71. Glitsch MD, Bakowski D, Parekh AB (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 21:6744–6754

    PubMed  CAS  Google Scholar 

  72. Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418

    PubMed  Google Scholar 

  73. Graier WF, Paltauf-Doburzynska J, Hill BJ, Fleischhacker E, Hoebel BG, Kostner GM, Sturek M (1998) Submaximal stimulation of porcine endothelial cells causes focal Ca2+ elevation beneath the cell membrane. J Physiol 506:109–125

    PubMed  CAS  Google Scholar 

  74. Graier WF, Simecek S, Sturek M (1995) Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol 482:259–274

    PubMed  CAS  Google Scholar 

  75. Guidarelli A, Sciorati C, Clementi E, Cantoni O (2006) Peroxynitrite mobilizes calcium ions from ryanodine-sensitive stores, a process associated with the mitochondrial accumulation of the cation and the enforced formation of species mediating cleavage of genomic DNA. Free Radic Biol Med 41:154–164

    PubMed  CAS  Google Scholar 

  76. Gunter KK, Gunter TE (1994) Transport of calcium by mitochondria. J Bioenerg Biomembr 26:471–485

    PubMed  CAS  Google Scholar 

  77. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28:285–296

    PubMed  CAS  Google Scholar 

  78. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  79. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102

    PubMed  CAS  Google Scholar 

  80. Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    PubMed  CAS  Google Scholar 

  81. Hajnoczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162

    PubMed  CAS  Google Scholar 

  82. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424

    PubMed  CAS  Google Scholar 

  83. Hanley PJ, Daut J (2005) KATP channels and preconditioning: a re-examination of the role of mitochondrial KATP channels and an overview of alternative mechanisms. J Mol Cell Cardiol 39:17–50

    PubMed  CAS  Google Scholar 

  84. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542:735–741

    PubMed  CAS  Google Scholar 

  85. Hansford RG, Chappell JB (1967) The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem Biophys Res Commun 27:686–692

    PubMed  CAS  Google Scholar 

  86. Harper ME, Dent R, Monemdjou S, Bezaire V, Van Wyck L, Wells G, Kavaslar GN, Gauthier A, Tesson F, McPherson R (2001) Decreased mitochondrial proton leak and reduced expression of uncoupling protein 3 in skeletal muscle of obese diet-resistant women. Diabetes 51:2459–2466

    Google Scholar 

  87. Harris DA, Das AM (1991) Control of mitochondrial ATP synthesis in the heart. Biochem J 280:561–573

    PubMed  CAS  Google Scholar 

  88. Hernandez-Guijo JM, Maneu-Flores VE, Ruiz-Nuno A, Villarroya M, Garcia AG, Gandia L (2001) Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria. J Neurosci 21:2553–2560

    PubMed  CAS  Google Scholar 

  89. Herrington J, Park YB, Babcock DF, Hille B (1996) Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16:219–228

    PubMed  CAS  Google Scholar 

  90. Holmuhamedov EL, Jahangir A, Oberlin A, Komarov A, Colombini M, Terzic A (2004) Potassium channel openers are uncoupling protonophores: implication in cardioprotection. FEBS Lett 568:167–170

    PubMed  CAS  Google Scholar 

  91. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen RF, Witzmann FA, Harris RA, Balaban RS (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524-2536

    PubMed  CAS  Google Scholar 

  92. Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 38:2–11

    PubMed  CAS  Google Scholar 

  93. Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci USA 97:10607–10612

    PubMed  CAS  Google Scholar 

  94. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    PubMed  CAS  Google Scholar 

  95. Ishihara N, Jofuku A, Eura Y, Mihara K (2003) Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 301:891–898

    PubMed  CAS  Google Scholar 

  96. Ishii K, Hirose K, Iino M (2006) Ca2+ shuttling between endoplasmic reticulum and mitochondria underlying Ca2+ oscillations. EMBO Rep 7:390–396

    PubMed  CAS  Google Scholar 

  97. Itoh S, Lemay S, Osawa M, Che W, Duan Y, Tompkins A, Brookes PS, Sheu SS, Abe J (2005) Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells. J Biol Chem 280:26383–26396

    PubMed  CAS  Google Scholar 

  98. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379

    PubMed  CAS  Google Scholar 

  99. Jezek P (1999) Fatty acid interaction with mitochondrial uncoupling proteins. J Bioenerg Biomembr 31:457–466

    PubMed  CAS  Google Scholar 

  100. Jezek P, Garlid KD, Jaburek M (2002) Possible physiological roles of mitochondrial uncoupling proteins-UCPn: Mechanism of uncoupling protein action. Int J Biochem Cell Biol 34:1190–1206

    PubMed  CAS  Google Scholar 

  101. Jezek P, Zackova M, Ruzicka M, Skobisova E, Jaburek M (2004) Mitochondrial uncoupling proteins—facts and fantasies. Physiol Res 53:S199–S211

    PubMed  CAS  Google Scholar 

  102. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG (2007) ‘Mild Uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurochem 10:1619–1631

    Google Scholar 

  103. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438–441

    PubMed  CAS  Google Scholar 

  104. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812

    PubMed  CAS  Google Scholar 

  105. Kamishima T, Quayle JM (2002) Mitochondrial Ca2+ uptake is important over low [Ca2+]i range in arterial smooth muscle. Am J Physiol 283:H2431–H2439

    CAS  Google Scholar 

  106. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    PubMed  CAS  Google Scholar 

  107. Kitagawa Y, Racker E (1982) Purification and characterization of two protein kinases from bovine heart mitochondrial membrane. J Biol Chem 257:4547–4551

    PubMed  CAS  Google Scholar 

  108. Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J 22:1235–1244

    PubMed  CAS  Google Scholar 

  109. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 6:248–261

    PubMed  CAS  Google Scholar 

  110. Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic {beta} cell dysfunction. J Clin Invest 112:1831–1842

    PubMed  CAS  Google Scholar 

  111. Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW (2003) Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 994:27–36

    PubMed  CAS  Google Scholar 

  112. Landolfi B, Curci S, Debellis L, Pozzan T, Hofer AM (1998) Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. J Cell Biol 142:1235–1243

    PubMed  CAS  Google Scholar 

  113. Lasorsa FM, Pinton P, Palmieri L, Fiermonte G, Rizzuto R, Palmieri F (2003) Recombinant expression of the Ca2+-sensitive aspartate/glutamate carrier increases mitochondrial ATP production in agonist-stimulated Chinese hamster ovary cells. J Biol Chem 278:38686–38692

    PubMed  CAS  Google Scholar 

  114. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    PubMed  CAS  Google Scholar 

  115. Lenzen S, Hickethier R, Panten U (1986) Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport. J Biol Chem 261:16478–16483

    PubMed  CAS  Google Scholar 

  116. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    PubMed  CAS  Google Scholar 

  117. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104:4682–4687

    PubMed  CAS  Google Scholar 

  118. Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    PubMed  CAS  Google Scholar 

  119. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    PubMed  CAS  Google Scholar 

  120. Litsky ML, Pfeiffer DR (1997) Regulation of the mitochondrial Ca2+ uniporter by external adenine nucleotides: the uniporter behaves like a gated channel which is regulated by nucleotides and divalent cations. Biochemistry 36:7071–7080

    PubMed  CAS  Google Scholar 

  121. Lobaton CD, Vay L, Hernandez-Sanmiguel E, Santodomingo J, Moreno A, Montero M, Alvarez J (2005) Modulation of mitochondrial Ca2+ uptake by estrogen receptor agonists and antagonists. Br J Pharmacol 145:862–871

    PubMed  CAS  Google Scholar 

  122. Luciani DS, Misler S, Polonsky KS (2006) Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets. J Physiol 572:379–392

    PubMed  CAS  Google Scholar 

  123. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99:172–182

    PubMed  CAS  Google Scholar 

  124. Madesh M, Hawkins BJ, Milovanova T, Bhanumathy CD, Joseph SK, RamachandraRao SP, Sharma K, Kurosaki T, Fisher AB (2005) Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol 170:1079–1090

    PubMed  CAS  Google Scholar 

  125. Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41:63–76

    PubMed  CAS  Google Scholar 

  126. Malli R, Frieden M, Osibow K, Graier WF (2003) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278:10807–10815

    PubMed  CAS  Google Scholar 

  127. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, store-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    PubMed  CAS  Google Scholar 

  128. Malli R, Frieden M, Trenker M, Graier WF (2005) The role of mitochondria for Ca2+ refilling of the ER. J Biol Chem 280:12114–12122

    PubMed  CAS  Google Scholar 

  129. Mannella CA (1998) Conformational changes in the mitochondrial channel protein, VDAC, and their functional implications. J Struct Biol 121:207–218

    PubMed  CAS  Google Scholar 

  130. Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B, Loew LM, Hsieh CE, Buttle K, Marko M (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100

    PubMed  CAS  Google Scholar 

  131. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem 273:10223–10231

    PubMed  CAS  Google Scholar 

  132. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    PubMed  CAS  Google Scholar 

  133. McCormack JG, Denton RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180:533–544

    PubMed  CAS  Google Scholar 

  134. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  135. McMillin-Wood J, Wolkowicz PE, Chu A, Tate CA, Goldstein MA, Entman ML (1980) Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 591:251–265

    PubMed  CAS  Google Scholar 

  136. Michalak M, Burns K, Andrin C, Mesaeli N, Jass GH, Busaan JL, Opas M (1996) Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 271:29436–29445

    PubMed  CAS  Google Scholar 

  137. Michalak M, Lynch J, Groenendyk J, Guo L, Robert Parker JM, Opas M (2002) Calreticulin in cardiac development and pathology. Biochim Biophys Acta 1600:32–37

    PubMed  CAS  Google Scholar 

  138. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278

    PubMed  CAS  Google Scholar 

  139. Mironov SL, Ivannikov MV, Johansson M (2005) [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules: From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 280:715–721

    PubMed  CAS  Google Scholar 

  140. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    PubMed  CAS  Google Scholar 

  141. Montell C (2005) The TRP superfamily of cation channels. Sci STKE. 2005:re3

    PubMed  Google Scholar 

  142. Montero M, Lobaton CD, Hernandez-Sanmiguel E, Santodomingo J, Vay L, Moreno A, Alvarez J (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem J 384:19–24

    PubMed  CAS  Google Scholar 

  143. Montero M, Lobaton CD, Moreno A, Alvarez J (2002) A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190. FASEB J 16:1955–1957

    PubMed  CAS  Google Scholar 

  144. Moreno-Sanchez R (1985) Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. J Biol Chem 260:12554–12560

    PubMed  CAS  Google Scholar 

  145. Mozo J, Ferry G, Studeny A, Pecqueur C, Rodriguez M, Boutin JA, Bouillaud F (2006) Expression of UCP3 in CHO cells does not cause uncoupling, but controls mitochondrial activity in the presence of glucose. Biochem J 393:431–439

    PubMed  CAS  Google Scholar 

  146. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66:863–917

    PubMed  CAS  Google Scholar 

  147. Nicchitta CV, Williamson JR (1984) Spermine. A regulator of mitochondrial calcium cycling. J Biol Chem 259:12978–12983

    PubMed  CAS  Google Scholar 

  148. Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474

    PubMed  CAS  Google Scholar 

  149. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    PubMed  CAS  Google Scholar 

  150. Nicholls DG, Scott ID (1980) The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J 186:833–839

    PubMed  CAS  Google Scholar 

  151. Nunez L, Senovilla L, Sanz-Blasco S, Chamero P, Alonso MT, Villalobos C, Garcia-Sancho J (2007) Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons. J Physiol 580:385–395

    PubMed  CAS  Google Scholar 

  152. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill D, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282:9105–9116

    PubMed  CAS  Google Scholar 

  153. Osibow K, Frank S, Malli R, Zechner R, Graier WF (2006) Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochem J 396:173–182

    PubMed  CAS  Google Scholar 

  154. Osibow K, Malli R, Kostner GM, Graier WF (2006) A new type of non-Ca2+-buffering apo(a)-based fluorescent indicator for intraluminal Ca2+ in the endoplasmic reticulum. J Biol Chem 281:5017–5025

    PubMed  CAS  Google Scholar 

  155. Ovide-Bordeaux S, Ventura-Clapier R, Veksler V (2000) Do modulators of the mitochondrial KATP channel change the function of mitochondria in situ? J Biol Chem 275:37291–37295

    PubMed  CAS  Google Scholar 

  156. Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34

    PubMed  CAS  Google Scholar 

  157. Palmi M, Youmbi GT, Fusi F, Sgaragli GP, Dixon HB, Frosini M, Tipton KF (1999) Potentiation of mitochondrial Ca2+ sequestration by taurine. Biochem Pharmacol 58:1123–1131

    PubMed  CAS  Google Scholar 

  158. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F (2001) Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20:5060–5069

    PubMed  CAS  Google Scholar 

  159. Paltauf-Doburzynska J, Frieden M, Spitaler M, Graier WF (2000) Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+–ATPase. J Physiol 524:701–713

    PubMed  CAS  Google Scholar 

  160. Paltauf-Doburzynska J, Malli R, Graier WF (2004) Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells. J Cardiovasc Pharmacol 44:424–437

    Google Scholar 

  161. Parekh AB, Putney JWJ (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    PubMed  CAS  Google Scholar 

  162. Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874

    PubMed  CAS  Google Scholar 

  163. Parone PA, James D, Martinou JC (2002) Mitochondria: regulating the inevitable. Biochimie 84:105–111

    PubMed  CAS  Google Scholar 

  164. Parone PA, Martinou JC (2006) Mitochondrial fission and apoptosis: an ongoing trial. Biochim Biophys Acta 1763:522–530

    PubMed  CAS  Google Scholar 

  165. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    PubMed  CAS  Google Scholar 

  166. Petersen OH (2002) Calcium signal compartmentalization. Biol Res 35:177–182

    Article  PubMed  CAS  Google Scholar 

  167. Petersen OH (2003) Localization and regulation of Ca2+ entry and exit pathways in exocrine gland cells. Cell Calcium 33:337–344

    PubMed  CAS  Google Scholar 

  168. Petersen OH, Burdakov D, Tepikin AV (1999) Polarity in intracellular calcium signaling. Bioessays 21:851–860

    PubMed  CAS  Google Scholar 

  169. Petersen OH, Tepikin A, Park MK (2001) The endoplasmic reticulum: one continuous or several separate Ca2+ stores? Trends Neurosci 24:271–276

    PubMed  CAS  Google Scholar 

  170. Pfeiffer DR, Gunter TE, Eliseev R, Broekemeier KM, Gunter KK (2001) Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition. IUBMB Life 52:205–212

    PubMed  CAS  Google Scholar 

  171. Pinton P, Leo S, Wieckowski MR, Di Benedetto G, Rizzuto R (2004) Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. J Cell Biol 165:223–232

    PubMed  CAS  Google Scholar 

  172. Pitter JG, Maechler P, Wollheim CB, Spat A (2002) Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state. Cell Calcium 31:97–104

    PubMed  CAS  Google Scholar 

  173. Poburko D, Potter K, van Breemen E, Fameli N, Liao CH, Basset O, Ruegg UT, van Breemen C (2006) Mitochondria buffer NCX-mediated Ca2+-entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium 40:359–371

    PubMed  CAS  Google Scholar 

  174. Pralong WF, Hunyady L, Varnai P, Wollheim CB, Spat A (1992) Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci USA 89:132–136

    PubMed  CAS  Google Scholar 

  175. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    PubMed  CAS  Google Scholar 

  176. Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M (2006) Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J Biol Chem 281:40302–40309

    PubMed  CAS  Google Scholar 

  177. Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    PubMed  CAS  Google Scholar 

  178. Reed KC, Bygrave FL (1974) The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J 140:143–155

    PubMed  CAS  Google Scholar 

  179. Rego AC, Oliveira CR (2003) Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem Res 28:1563–1574

    PubMed  CAS  Google Scholar 

  180. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15:3318–3327

    PubMed  CAS  Google Scholar 

  181. Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345:161–179

    PubMed  CAS  Google Scholar 

  182. Rizzuto R, Bastianutto C, Brini M, Murgia M, Pozzan T (1994) Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126:1183–1194

    Google Scholar 

  183. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    PubMed  CAS  Google Scholar 

  184. Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5:635–642

    PubMed  CAS  Google Scholar 

  185. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004:re1

    Article  PubMed  Google Scholar 

  186. Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199

    PubMed  CAS  Google Scholar 

  187. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    PubMed  CAS  Google Scholar 

  188. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP (1998) Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 17:4987–5000

    PubMed  CAS  Google Scholar 

  189. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    PubMed  CAS  Google Scholar 

  190. Rube DA, van der Bliek AM (2004) Mitochondrial morphology is dynamic and varied. Mol Cell Biochem 256–257:331–339

    PubMed  Google Scholar 

  191. Santo-Domingo J, Vay L, Hernandez-Sanmiguel E, Lobaton CD, Moreno A, Montero M, Alvarez J (2007) The plasma membrane Na+/Ca2+ exchange inhibitor KB-R7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol (in press)

  192. Saris NE, Allshire A (1989) Calcium ion transport in mitochondria. Methods Enzymol 174:68–85

    Article  PubMed  CAS  Google Scholar 

  193. Saris NE, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70:187–194

    CAS  Google Scholar 

  194. Sarrouilhe D, Baudry M (1996) Evidence of true protein kinase CKII activity in mitochondria and its spermine-mediated translocation to inner membrane. Cell Mol Biol (Noisy-le-grand) 42:189–197

    CAS  Google Scholar 

  195. Schwarz M, Andrade-Navarro MA, Gross A (2007) Mitochondrial carriers and pores: Key regulators of the mitochondrial apoptotic program? Apoptosis 12:869–876

    PubMed  CAS  Google Scholar 

  196. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    PubMed  CAS  Google Scholar 

  197. Sedova M, Blatter LA (2000) Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 275:35402–35407

    PubMed  CAS  Google Scholar 

  198. Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270

    PubMed  CAS  Google Scholar 

  199. Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated calcium entry. Physiology (Bethesda) 19:355–361

    CAS  Google Scholar 

  200. Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol 286:F784–F794

    Article  CAS  Google Scholar 

  201. Soboloff J, Berger SA (2002) Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. J Biol Chem 277:13812–13820

    PubMed  CAS  Google Scholar 

  202. Starkov AA, Polster BM, Fiskum G (2002) Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 83:220–228

    PubMed  CAS  Google Scholar 

  203. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175:901–911

    PubMed  CAS  Google Scholar 

  204. Szabadkai G, Simoni AM, Bianchi K, De Stefani D, Leo S, Wieckowski MR, Rizzuto R (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449

    PubMed  CAS  Google Scholar 

  205. Szabadkai G, Simoni AM, Rizzuto R (2003) Mitochondrial Ca2+ uptake requires sustained Ca2+ release from the endoplasmic reticulum. J Biol Chem 278:15153–15161

    PubMed  CAS  Google Scholar 

  206. Szabo I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798

    PubMed  CAS  Google Scholar 

  207. Szanda G, Koncz P, Varnai P, Spat A (2006) Mitochondrial Ca2+ uptake with and without the formation of high-Ca2+ microdomains. Cell Calcium 40:527–537

    PubMed  CAS  Google Scholar 

  208. Szewczyk A, Skalska J, Glab M, Kulawiak B, Malinska D, Koszela-Piotrowska I, Kunz WS (2006) Mitochondrial potassium channels: from pharmacology to function. Biochim Biophys Acta 1757:715–720

    PubMed  CAS  Google Scholar 

  209. Tanaami T, Ishida H, Seguchi H, Hirota Y, Kadono T, Genka C, Nakazawa H, Barry WH (2005) Difference in propagation of Ca2+ release in atrial and ventricular myocytes. Jpn J Physiol 55:81–91

    PubMed  CAS  Google Scholar 

  210. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158

    PubMed  CAS  Google Scholar 

  211. Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. Am J Physiol Cell Physiol 278:C423–C435

    PubMed  CAS  Google Scholar 

  212. Teubl M, Groschner K, Kohlwein SD, Mayer B, Schmidt K (1999) Na+/Ca2+ exchange facilitates Ca2+-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 274:29529–29535

    PubMed  CAS  Google Scholar 

  213. Thyagarajan B, Malli R, Schmidt K, Graier WF, Groschner K (2002) Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol 137:821–830

    PubMed  CAS  Google Scholar 

  214. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18:4999–5008

    PubMed  CAS  Google Scholar 

  215. Trenker M, Malli R, Fertschai I, Levak-Frank S, Graier WF (2007) Uncoupling-proteins 2 and 3 are elementary for mitochondrial Ca2+ uniport. Nat Cell Biol 9:445–452

    PubMed  CAS  Google Scholar 

  216. Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36:499–508

    PubMed  CAS  Google Scholar 

  217. Varadi A, Grant A, McCormack M, Nicolson T, Magistri M, Mitchell KJ, Halestrap AP, Yuan H, Schwappach B, Rutter GA (2006) Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells: against a role in organelle cation homeostasis. Diabetologia 49:1567–1577

    PubMed  CAS  Google Scholar 

  218. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    PubMed  CAS  Google Scholar 

  219. Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    PubMed  CAS  Google Scholar 

  220. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498

    PubMed  CAS  Google Scholar 

  221. Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–495

    PubMed  CAS  Google Scholar 

  222. Wieckowski MR, Szabadkai G, Wasilewski M, Pinton P, Duszynski J, Rizzuto R (2006) Overexpression of adenine nucleotide translocase reduces Ca(2+) signal transmission between the ER and mitochondria. Biochem Biophys Res Commun 348:393–399

    PubMed  CAS  Google Scholar 

  223. Wu SN (2003) Large-conductance Ca2+- activated K+ channels: physiological role and pharmacology. Curr Med Chem 10:649–661

    PubMed  CAS  Google Scholar 

  224. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283:1493–1497

    PubMed  CAS  Google Scholar 

  225. Yan Y, Wei CL, Zhang WR Cheng HP, Liu J (2006) Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin 27:821–826

    PubMed  CAS  Google Scholar 

  226. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    PubMed  CAS  Google Scholar 

  227. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672

    PubMed  CAS  Google Scholar 

  228. Yu XX, Lewin DA, Zhong A, Brush J, Schow PW, Sherwood SW, Pan G, Adams SH (2001) Overexpression of the human 2-oxoglutarate carrier lowers mitochondrial membrane potential in HEK-293 cells: contrast with the unique cold-induced mitochondrial carrier CGI-69. Biochem J 353:369–375

    PubMed  CAS  Google Scholar 

  229. Zhang BX, Ma X, Zhang W, Yeh CK, Lin A, Luo J, Sprague EA, Swerdlow RH, Katz MS (2006) Polyunsaturated fatty acids mobilize intracellular Ca2+ in NT2 human teratocarcinoma cells by causing release of Ca2+ from mitochondria. Am J Physiol 290:C1321–C1333

    CAS  Google Scholar 

  230. Zhang Y, Soboloff J, Zhu Z, Berger SA (2006) Inhibition of Ca2+ influx is required for mitochondrial reactive oxygen species-induced endoplasmic reticulum Ca2+ depletion and cell death in leukemia cells. Mol Pharmacol 70:1424–1434

    PubMed  CAS  Google Scholar 

  231. Zoccarato F, Cavallini L, Alexandre A (2004) Respiration-dependent removal of exogenous H2O2 in brain mitochondria: inhibition by Ca2+. J Biol Chem 279:4166–4174

    PubMed  CAS  Google Scholar 

  232. Zoccarato F, Nicholls D (1982) The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Eur J Biochem 127:333–338

    PubMed  CAS  Google Scholar 

  233. Zsurka G, Gregan J, Schweyen RJ (2001) The human mitochondrial Mrs2 protein functionally substitutes for its yeast homologue, a candidate magnesium transporter. Genomics 72:158–168

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The scientific work of the authors is supported by the Austrian Funds (P16860-B09 and SFB F3010-B05; WFG), the Franz Lanyar Foundation (WFG), the Swiss National Science Foundation (#320000-107622; MF), and the Foundation Carlos and Elsie de Reuter (MF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang F. Graier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graier, W.F., Frieden, M. & Malli, R. Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch - Eur J Physiol 455, 375–396 (2007). https://doi.org/10.1007/s00424-007-0296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0296-1

Keywords

Navigation