Skip to main content
Log in

Short-window spectral analysis using AMVAR and multitaper methods: a comparison

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We compare two popular methods for estimating the power spectrum from short data windows, namely the adaptive multivariate autoregressive (AMVAR) method and the multitaper method. By analyzing a simulated signal (embedded in a background Ornstein–Uhlenbeck noise process) we demonstrate that the AMVAR method performs better at detecting short bursts of oscillations compared to the multitaper method. However, both methods are immune to jitter in the temporal location of the signal. We also show that coherence can still be detected in noisy bivariate time series data by the AMVAR method even if the individual power spectra fail to show any peaks. Finally, using data from two monkeys performing a visuomotor pattern discrimination task, we demonstrate that the AMVAR method is better able to determine the termination of the beta oscillations when compared to the multitaper method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartosch L (2001) Generation of colured noise. Int J Modern Phys C 12: 851–855

    Article  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta Oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. PNAS 101: 9849–9854

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150: 228–237

    Article  PubMed  Google Scholar 

  • Dhamala M, Rangarajan G, Ding M (2008) Estimating Granger causality from Fourier and wavelet transforms of time series data. Phy Rev Lett 100(018701): 1–4

    Google Scholar 

  • Dhamala M, Rangarajan G, Ding M (2008) Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage 41: 354–362

    Article  PubMed  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modelling: data preprocessing, model validation and variability assessment. Biol Cybern 83: 35–45

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DT (1996) The mathematics of Brownian motion and Johnson noise. Am J Phys 64: 225–240

    Article  Google Scholar 

  • Granger CWJ, Hughes AO (1968) Spectral analysis of short series—a simulation study. J R Stat Soc Ser A 130: 83–99

    Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden Day, San Francisco

    Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating casual relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Ledberg A, Bressler SL, Ding M, Coppola R, Nakamura R (2007) Large-scale visuomotor integration in the cerebral cortex. Cereb Cortex 17: 44–62

    Article  PubMed  Google Scholar 

  • Marple SL (1987) Digital spectral analysis with applications. Prentice Hall, New Jersey

    Google Scholar 

  • Mitra PP, Pesaran B (1999) Analysis of dynamic brain imaging data. Biophys J 76: 691–708

    Article  PubMed  CAS  Google Scholar 

  • Morf M, Vieira A, Lee D, Kailath T (1978) Recursive multichannel maximum entropy spectral estimation. IEEE Trans Geosci Electron 16: 85–94

    Article  Google Scholar 

  • Muthuswamy J, Thakor NV (1998) Spectral analysis methods for neurological signals. J Neurosci Methods 83: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Percival DB, Walden AT (1993) Spectral analysis for physical applications. Cambridge University Press, New York

    Google Scholar 

  • Percival D, Walden A (2000) Wavelet methods for time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Slepian D, Pollak HO (1961) Prolate spheroidal wavefunctions Fourier analysis and uncertainty. I Bell Syst Tech J 40: 43–63

    Google Scholar 

  • Spyers-Ashby JM, Bain PG, Roberts SJ (1998) A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. J Neurosci Methods 83: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70: 1055–1096

    Article  Google Scholar 

  • Walden AT (2000) A unified view of multitaper multivariate spectral estimation. Biometrika 87: 767–788

    Article  Google Scholar 

  • Zhang Y, Bressler SL, Chen Y, Nakamura R, Ding M (2005) Beta and gamma synchronization and desynchronization in monkeys during a visual discrimination task. Soc Neurosc Abstr 31 (Prog.No. 413.18)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Rangarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalatore, H., Rangarajan, G. Short-window spectral analysis using AMVAR and multitaper methods: a comparison. Biol Cybern 101, 71–80 (2009). https://doi.org/10.1007/s00422-009-0318-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0318-5

Keywords

Navigation