Skip to main content
Log in

Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?

  • Mini Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

We aimed at providing an overview of the currently acknowledged benefits and limitations of neuromuscular electrical stimulation (NMES) training programs in both healthy individuals and in recreational and competitive athletes regarding muscle performance. Typical NMES resistance exercises are performed under isometric conditions and involve the application of electrical stimuli delivered as intermittent high frequencies trains (>40–50 Hz) through surface electrodes. NMES has been acknowledged as an efficient modality leading to significant improvements in isometric maximal voluntary strength. However, the resulting changes in dynamic strength, motor performance skills and explosive movements (i.e., jump performance, sprint ability) are still ambiguous and could only be obtained when NMES is combined with voluntary dynamic exercise such as plyometrics. Additionally, the effects of NMES on muscle fatigability are still poorly understood and required further investigations. While NMES effectiveness could be partially related to several external adjustable factors such as training intensity, current characteristics (e.g., intensity, pulse duration…) or the design of training protocols (number of contractions per session, number of sessions per week…), anatomical specificities (e.g., morphological organization of the axonal branches within the muscle) appear as the main factor accounting for the differences in NMES response. Overall, NMES cannot be considered as a surrogate training method, but rather as an adjunct to voluntary resistance training. The combination of these two training modalities should optimally improve muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Aldayel A, Jubeau M, McGuigan M, Nosaka K (2010a) Comparison between alternating and pulsed current electrical muscle stimulation for muscle and systemic acute responses. J Appl Physiol 109:735–744

    Article  PubMed  Google Scholar 

  • Aldayel A, Jubeau M, McGuigan MR, Nosaka K (2010b) Less indication of muscle damage in the second than initial electrical muscle stimulation bout consisting of isometric contractions of the knee extensors. Eur J Appl Physiol 108:709–717

    Article  PubMed  Google Scholar 

  • Alon G (1985) High voltage stimulation. Effects of electrode size on basic excitatory responses. Phys Ther 65:890–895

    PubMed  CAS  Google Scholar 

  • Alon G, Smith GV (2005) Tolerance and conditioning to neuro-muscular electrical stimulation within and between session and gender. J Sci Med Sport:395–405

  • Alon G, McCombe SA, Koutsantonis S, Stumphauzer LJ, Burgwin KC, Parent MM, Bosworth RA (1987) Comparison of the effects of electrical stimulation and exercise on abdominal musculature. J Orthop Sports Phys Ther 8:567–573

    PubMed  CAS  Google Scholar 

  • Alon G, Frederickson R, Gallager L, Rehwoldt CT, Guillen M, Putman Pement ML, Barnhart JB (1992) Electrical stimulation of the abdominals: the effects of three versus five weekly treatments. J Clin Electrophysiol 4:5–11

    Google Scholar 

  • Alon G, Kantor G, Ho HS (1994) Effects of electrode size on basic excitatory responses and on selected stimulus parameters. J Orthop Sports Phys Ther 20:29–35

    PubMed  CAS  Google Scholar 

  • Babault N, Cometti G, Bernardin M, Pousson M, Chatard JC (2007) Effects of electromyostimulation training on muscle strength and power of elite rugby players. J Strength Cond Res 21:431–437

    PubMed  Google Scholar 

  • Balogun JA, Onilari OO, Akeju OA, Marzouk DK (1993) High voltage electrical stimulation in the augmentation of muscle strength: effects of pulse frequency. Arch Phys Med Rehabil 74:910–916

    PubMed  CAS  Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  • Billot M, Martin A, Paizis C, Cometti C, Babault N (2010) Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players. J Strength Cond Res 24:1407–1413

    Article  PubMed  Google Scholar 

  • Bircan C, Senocak O, Peker O, Kaya A, Tamci SA, Gulbahar S, Akalin E (2002) Efficacy of two forms of electrical stimulation in increasing quadriceps strength: a randomized controlled trial. Clin Rehabil 16:194–199

    Article  PubMed  Google Scholar 

  • Boutelle D, Smith B, Malone TR (1985) A strength study utilizing the electro-stim 180. J Orthop Sports Phys Ther 7:50–53

    PubMed  CAS  Google Scholar 

  • Brocherie F, Babault N, Cometti G, Maffiuletti N, Chatard JC (2005) Electrostimulation training effects on the physical performance of ice hockey players. Med Sci Sports Exerc 37:455–460

    Article  PubMed  Google Scholar 

  • Brooks ME, Smith EM, Currier D (1990) Effect of longitudinal versus transverse electrode placement on torque production by the quadriceps femoris muscle during neuromuscular electrical stimulation. J Orthop Sports Phys Ther 11:530–534

    PubMed  CAS  Google Scholar 

  • Cobb M (2002) Timeline: exorcizing the animal spirits: Jan Swammerdam on nerve function. Nat Rev Neurosci 3:395–400

    Article  PubMed  CAS  Google Scholar 

  • Colson S, Martin A, Van Hoecke J (2000) Re-examination of training effects by electrostimulation in the human elbow musculoskeletal system. Int J Sports Med 21:281–288

    Article  PubMed  CAS  Google Scholar 

  • Colson SS, Martin A, Van Hoecke J (2009) Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength. J Electromyogr Kinesiol 19:e311–e319

    Article  PubMed  Google Scholar 

  • Currier DP, Mann R (1983) Muscular strength development by electrical stimulation in healthy individuals. Phys Ther 63:915–921

    PubMed  CAS  Google Scholar 

  • Davies CT, Dooley P, McDonagh MJ, White MJ (1985) Adaptation of mechanical properties of muscle to high force training in man. J Physiol 365:277–284

    PubMed  CAS  Google Scholar 

  • Deley G, Cometti C, Fatnassi A, Paizis C, Babault N (2011) Effects of combined electromyostimulation and gymnastics training in prepubertal girls. J Strength Cond Res 25:520–526

    Google Scholar 

  • Delitto A, Brown M, Strube MJ, Rose SJ, Lehman RC (1989) Electrical stimulation of quadriceps femoris in an elite weight lifter: a single subject experiment. Int J Sports Med 10:187–191

    Article  PubMed  CAS  Google Scholar 

  • Duchateau J, Hainaut K (1988) Training effects of sub-maximal electrostimulation in a human muscle. Med Sci Sports Exerc 20:99–104

    Article  PubMed  CAS  Google Scholar 

  • Eriksson E, Haggmark T, Kiessling KH, Karlsson J (1981) Effect of electrical stimulation on human skeletal muscle. Int J Sports Med 2:18–22

    Article  PubMed  CAS  Google Scholar 

  • Fahey TD, Harvey M, Schroeder RV, Ferguson F (1985) Influence of sex differences and knee joint position on electrical stimulation-modulated strength increases. Med Sci Sports Exerc 17:144–147

    PubMed  CAS  Google Scholar 

  • Ferguson JP, Blackley MW, Knight RD, Sutlive TG, Underwood FB, Greathouse DG (1989) Effects of varying electrode site placements on the torque output of an electrically stimulated involuntary quadriceps femoris muscle contraction. J Orthop Sports Phys Ther 11:24–29

    PubMed  CAS  Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2005) Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 37:1291–1299

    Article  PubMed  Google Scholar 

  • Gondin J, Duclay J, Martin A (2006a) Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol 95:3328–3335

    Article  PubMed  Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2006b) Neural and muscular changes to detraining after electrostimulation training. Eur J Appl Physiol 97:165–173

    Article  PubMed  Google Scholar 

  • Gondin J, Guette M, Jubeau M, Ballay Y, Martin A (2006c) Central and peripheral contributions to fatigue after electrostimulation training. Med Sci Sports Exerc 38:1147–1156

    Article  PubMed  Google Scholar 

  • Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R (2011) Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol 110:433–450

    Article  PubMed  CAS  Google Scholar 

  • Goonan MR, Guerriero GP, Godfrey D, Weisberg J (1985) The effects of electrical stimulation of normal abductor digiti quinti on strength. J Orthop Sports Phys Ther 6:343–346

    Article  PubMed  CAS  Google Scholar 

  • Gorgey AS, Mahoney E, Kendall T, Dudley GA (2006) Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol 97:737–744

    Article  PubMed  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Hainaut K, Duchateau J (1992) Neuromuscular electrical stimulation and voluntary exercise. Sports Med 14:100–113

    Article  PubMed  CAS  Google Scholar 

  • Halback J, Straus D (1980) Comparison of electro-myo stimulation to isokinetic training in increasing -power of the knee extensor mechanism *. J Orthop Sports Phys Ther 2:20–24

    PubMed  CAS  Google Scholar 

  • Hartsell HD (1986) Electrical muscle stimulation and isometric exercise effects on selected quadriceps parameters*. J Orthop Sports Phys Ther 8:203–209

    PubMed  CAS  Google Scholar 

  • Herrero JA, Izquierdo M, Maffiuletti NA, Garcia-Lopez J (2006) Electromyostimulation and plyometric training effects on jumping and sprint time. Int J Sports Med 27:533–539

    Article  PubMed  CAS  Google Scholar 

  • Herrero AJ, Martin J, Martin T, Abadia O, Fernandez B, Garcia-Lopez D (2010a) Short-term effect of plyometrics and strength training with and without superimposed electrical stimulation on muscle strength and anaerobic performance: A randomized controlled trial Part II. J Strength Cond Res 24:1616–1622

    Article  PubMed  Google Scholar 

  • Herrero AJ, Martin J, Martin T, Abadia O, Fernandez B, Garcia-Lopez D (2010b) Short-term effect of strength training with and without superimposed electrical stimulation on muscle strength and anaerobic performance. A randomized controlled trial. Part I. J Strength Cond Res 24:1609–1615

    Article  PubMed  Google Scholar 

  • Hortobagyi T, Scott K, Lambert J, Hamilton G, Tracy J (1999) Cross-education of muscle strength is greater with stimulated than voluntary contractions. Mot Control 3:205–219

    CAS  Google Scholar 

  • Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141

    Article  PubMed  CAS  Google Scholar 

  • Jackson ECS, Seddon HJ (1945) Influence of galvanic stimulation on atrophy resulting from denervation. Brit Med J 13:4423–4424

    Google Scholar 

  • Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA (2006) Late neural adaptations to electrostimulation resistance training of the plantar flexor muscles. Eur J Appl Physiol 98:202–211

    Article  PubMed  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007a) Random motor unit activation by electrostimulation. Int J Sports Med 28:901–904

    Article  PubMed  CAS  Google Scholar 

  • Jubeau M, Zory R, Gondin J, Martin A, Maffiuletti NA (2007b) Effect of electrostimulation training-detraining on neuromuscular fatigue mechanisms. Neurosci Lett 424:41–46

    Article  PubMed  CAS  Google Scholar 

  • Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, Maffiuletti NA (2008) Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol 104:75–81

    Article  PubMed  CAS  Google Scholar 

  • Kim CK, Takala TE, Seger J, Karpakka J (1995) Training effects of electrically induced dynamic contractions in human quadriceps muscle. Aviat Space Environ Med 66:251–255

    PubMed  CAS  Google Scholar 

  • Kim KM, Croy T, Hertel J, Saliba S (2010) Effects of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction on quadriceps strength, function, and patient-oriented outcomes: a systematic review. J Orthop Sports Phys Ther 40:383–391

    PubMed  Google Scholar 

  • Kramer JF, Mendryk SW (1982) Electrical stimulation as a strength improvement technique: a review. J Orthop Sports Phys Ther 4:91–98

    PubMed  CAS  Google Scholar 

  • Kubiak RJ, Whitman KM, Johnston RM (1987) Changes in quadriceps femoris muscle strength using isometric exercise versus electrical stimulation. J Orthop Sports Phys Ther 8:537–541

    PubMed  CAS  Google Scholar 

  • Lai HS, De Domenico G, Strauss GR (1988) The effect of different electro-motor stimulation training intensities on strength improvement. Aust J Physiother 34:151–164

    Google Scholar 

  • Lake DA (1992) Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med 13:320–336

    Article  PubMed  CAS  Google Scholar 

  • Laughman RK, Youdas JW, Garrett TR, Chao EY (1983) Strength changes in the normal quadriceps femoris muscle as a result of electrical stimulation. Phys Ther 63:494–499

    PubMed  CAS  Google Scholar 

  • Lieber RL, Kelly MJ (1991) Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 71:715–721 (discussion 722–713)

    PubMed  CAS  Google Scholar 

  • Lloyd T, De Domenico G, Strauss GR, Singer K (1986) A review of the use of electro-motor stimulation in human muscles. Aust J Physiother 32:18–30

    Google Scholar 

  • Mackey AL, Bojsen-Moller J, Qvortrup K, Langberg H, Suetta C, Kalliokoski KK, Kjaer M, Magnusson SP (2008) Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. J Appl Physiol 105:1620–1627

    Article  PubMed  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Cometti G, Amiridis IG, Martin A, Pousson M, Chatard JC (2000) The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int J Sports Med 21:437–443

    Article  PubMed  CAS  Google Scholar 

  • Maffiuletti NA, Dugnani S, Folz M, Di Pierno E, Mauro F (2002a) Effect of combined electrostimulation and plyometric training on vertical jump height. Med Sci Sports Exerc 34:1638–1644

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Pensini M, Martin A (2002b) Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol 92:1383–1392

    PubMed  Google Scholar 

  • Maffiuletti NA, Bramanti J, Jubeau M, Bizzini M, Deley G, Cometti G (2009) Feasibility and efficacy of progressive electrostimulation strength training for competitive tennis players. J Strength Cond Res 23:677–682

    Article  PubMed  Google Scholar 

  • Malatesta D, Cattaneo F, Dugnani S, Maffiuletti NA (2003) Effects of electromyostimulation training and volleyball practice on jumping ability. J Strength Cond Res 17:573–579

    PubMed  Google Scholar 

  • Martin L, Cometti G, Pousson M, Morlon B (1993) Effect of electrical stimulation training on the contractile characteristics of the triceps surae muscle. Eur J Appl Physiol Occup Physiol 67:457–461

    Article  PubMed  CAS  Google Scholar 

  • McMiken DF, Todd-Smith M, Thompson C (1983) Strengthening of human quadriceps muscles by cutaneous electrical stimulation. Scand J Rehabil Med 15:25–28

    PubMed  CAS  Google Scholar 

  • Mohr T, Carlson B, Sulentic C, Landry R (1985) Comparison of isometric exercise and high volt galvanic stimulation on quadriceps femoris muscle strength. Phys Ther 65:606–612

    PubMed  CAS  Google Scholar 

  • Monaghan B, Caulfield B, O’Mathuna DP (2010) Surface neuromuscular electrical stimulation for quadriceps strengthening pre and post total knee replacement. Cochrane Database Syst Rev 20:CD007177

    Google Scholar 

  • Nobbs LA, Rhodes EC (1986) The Effect of electrical stimulation and isokinetic exercise on muscular power of the quadriceps femoris. J Orthop Sports Phys Ther 8:260–268

    PubMed  CAS  Google Scholar 

  • Osborne SL (1951) The retardation of atrophy in man by electrical stimulation of muscles. Arch Phys Med Rehabil 32:523–528

    PubMed  CAS  Google Scholar 

  • Owens J, Malone TR (1983) Treatment parameters of high frequency electrical stimulation as established on the electro-stim 180. J Orthop Sports Phys Ther 4:162–168

    PubMed  CAS  Google Scholar 

  • Paillard T, Noe F, Passelergue P, Dupui P (2005) Electrical stimulation superimposed onto voluntary muscular contraction. Sports Med 35:951–966

    Article  PubMed  Google Scholar 

  • Paillard T, Noe F, Bernard N, Dupui P, Hazard C (2008) Effects of two types of neuromuscular electrical stimulation training on vertical jump performance. J Strength Cond Res 22:1273–1278

    Article  PubMed  Google Scholar 

  • Parker MG, Bennett MJ, Hieb MA, Hollar AC, Roe AA (2003) Strength response in human femoris muscle during 2 neuromuscular electrical stimulation programs. J Orthop Sports Phys Ther 33:719–726

    PubMed  Google Scholar 

  • Patterson RP, Lockwood JS (1993) The influence of electrode size and type on surface stimulation of the quadriceps IEEE Trans Rehabil Eng 1:59–62

    Google Scholar 

  • Pichon F, Chatard JC, Martin A, Cometti G (1995) Electrical stimulation and swimming performance. Med Sci Sports Exerc 27:1671–1676

    PubMed  CAS  Google Scholar 

  • Porcari JP, McLean KP, Foster C, Kernozek T, Crenshaw B, Swenson C (2002) Effects of electrical muscle stimulation on body composition, muscle strength, and physical appearance. J Strength Cond Res 16:165–172

    PubMed  Google Scholar 

  • Portmann M, Montpetit R (1991) Effects of training by static and dynamic electrical stimulation on the muscular contraction. Sci Sports 6:193–203

    Article  Google Scholar 

  • Reincke H, Nelson KR (1990) Duchenne de Boulogne: electrodiagnosis of poliomyelitis. Muscle Nerve 13:56–62

    Article  PubMed  CAS  Google Scholar 

  • Requena Sanchez B, Padial Puche P, Gonzalez-Badillo JJ (2005) Percutaneous electrical stimulation in strength training: an update. J Strength Cond Res 19:438–448

    Article  PubMed  Google Scholar 

  • Rich NC (1992) Strength training via high frequency electrical stimulation. J Sports Med Phys Fitness 32:19–25

    PubMed  CAS  Google Scholar 

  • Romero JA, Sanford TL, Schroeder RV, Fahey TD (1982) The effects of electrical stimulation of normal quadriceps on strength and girth. Med Sci Sports Exerc 14:194–197

    PubMed  CAS  Google Scholar 

  • Selkowitz DM (1985) Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys Ther 65:186–196

    PubMed  CAS  Google Scholar 

  • Selkowitz DM (1989) High frequency electrical stimulation in muscle strengthening. A review and discussion. Am J Sports Med 17:103–111

    Article  PubMed  CAS  Google Scholar 

  • Sillen MJ, Speksnijder CM, Eterman RM, Janssen PP, Wagers SS, Wouters EF, Uszko-Lencer NH, Spruit MA (2009) Effects of neuromuscular electrical stimulation of muscles of ambulation in patients with chronic heart failure or COPD: a systematic review of the English-language literature. Chest 136:44–61

    Article  PubMed  Google Scholar 

  • Singer KP, De Domenico G, Strauss G (1987) Electro-motor stimulation research methodology and reporting: a need for standardization. Aust J Physiother 33:43–48

    Google Scholar 

  • Soo CL, Currier DP, Threlkeld AJ (1988) Augmenting voluntary torque of healthy muscle by optimization of electrical stimulation. Phys Ther 68:333–337

    PubMed  CAS  Google Scholar 

  • St Pierre D, Taylor AW, Lavoie M, Sellers W, Kots YM (1986) Effects of 2500 Hz sinusoidal current on fibre area and strength of the quadriceps femoris. J Sports Med Phys Fitness 26:60–66

    PubMed  CAS  Google Scholar 

  • Stefanovska A, Vodovnik L (1985) Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency. Scand J Rehabil Med 17:141–146

    PubMed  CAS  Google Scholar 

  • Thepaut-Mathieu C, Van Hoecke J, Maton B (1988) Myoelectrical and mechanical changes linked to length specificity during isometric training. J Appl Physiol 64:1500–1505

    PubMed  CAS  Google Scholar 

  • Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35:180–185

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    PubMed  CAS  Google Scholar 

  • Venable MP, Collins MA, O’Bryant HS, Denegar CR, Sedivec MJ, Alon G (1991) Effect of supplemental electrical stimulation on the development of strength, vertical jump performance and power. J Appl Sports Sci Res 5:139–143

    Google Scholar 

  • Vivodtzev I, Lacasse Y, Maltais F (2008) Neuromuscular electrical stimulation of the lower limbs in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev 28:79–91

    PubMed  Google Scholar 

  • Ward AR, Shkuratova N (2002) Russian electrical stimulation: the early experiments. Phys Ther 82:1019–1030

    PubMed  Google Scholar 

  • Willoughby DS, Simpson S (1996) The effects of combined electromyostimulation and dynamic muscular contractions on the strength of college basketball players. J Strength Cond Res 10:40–44

    Google Scholar 

  • Willoughby DS, Simpson S (1998) Supplemental EMS and dynamic weight training: effects on knee extensor strength and vertical jump of female college track and field athletes. J Strength Cond Res 12:131–137

    Google Scholar 

  • Zhou S, Oakman A, Davies A (2002) Effects of unilateral voluntary and electromyostimulation training on muscular strength of the contralateral limb. Hong Kong J Sports Med Sports 14:1–11

    Google Scholar 

  • Zory RF, Jubeau MM, Maffiuletti NA (2010) Contractile impairment after quadriceps strength training via electrical stimulation. J Strength Cond Res 24:458–464

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Association Française contre les Myopathies (AFM), Association pour le Développement des Recherches Biologiques et Médicales (ADEREM) and CNRS (UMR 6612). The authors are especially indebted to Dr Marc Jubeau for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Gondin.

Additional information

Communicated by Roberto Bottinelli.

This article is published as part of the Special Issue Cluster on the XVIII Congress of the International Society of Electrophysiology and Kinesiology (ISEK 2010) that took place in Aalborg, Denmark on 16-19 June 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondin, J., Cozzone, P.J. & Bendahan, D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?. Eur J Appl Physiol 111, 2473–2487 (2011). https://doi.org/10.1007/s00421-011-2101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2101-2

Keywords

Navigation