Skip to main content
Log in

Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aims of this study were to quantify the inter-test reliability of several voluntary, non-invasive measures of respiratory muscle function and to determine the implications of these data for studies using a repeated-measures design. Systematic measurement differences were found for 50% of the variables (P≤0.05, t-tests). Nevertheless, 95% ratio limits of agreement for most measures proved acceptable and similar to those reported elsewhere. The random error component of the agreement ratios ranged from 1.047 to 1.149 for measures of pulmonary function in healthy subjects (n=46), 1.045 to 1.056 for maximum static respiratory pressures (n=24), 1.062 to 1.173 for measures relating to the maximum pressure-flow-power relationship (n=16–22), and 1.036 to 1.071 for measures relating to maximum incremental inspiratory muscle performance (n=12). The judgement that the limits of agreement were acceptable is supported by the sample-size calculations. Estimated sample sizes based upon an alpha level of 0.05 and a statistical power of 0.9 were mostly ≤11 for a repeated-measures experimental design, particularly for the larger effect sizes (≥5%). However, peak expiratory flow, the maximum rate of pressure development and the time constant of relaxation, require larger sample sizes to detect small within-group changes. In conclusion, the described protocols provide reliable measurements for most parameters of respiratory muscle function in healthy subjects. Furthermore, experiments utilising a within-subjects design lasting up to 3 weeks can be conducted with feasible sample sizes (≤11 per group) where substantial (≥5%) changes are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubert X (1956) Thése d’agrégation. Université Catholique de Louvain, Brussels

  • Black LF, Hyatt RE (1969) Maximal respiratory pressures: normal values and relationship to age and sex. Am Rev Respir Dis 99:696–702

    CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  • Caine MP, McConnell AK (2000) Development and evaluation of a pressure threshold inspiratory muscle trainer for use in the context of sports performance. J Sports Eng 3:149–159

    Article  Google Scholar 

  • Caine MP, Sharpe GR, McConnell AK (2001) Development of an automated pressure-threshold loading device for evaluation of inspiratory muscle performance. J Sports Eng 4:87–94

    Article  Google Scholar 

  • Clanton TL, Dixon G, Drake J, Gadek JE (1985) Inspiratory muscle conditioning using a threshold loading device. Chest 87:62–66

    CAS  PubMed  Google Scholar 

  • Clanton TL, Calverly PM, Celli BR (1995) Tests of respiratory muscle endurance. Am J Respir Crit Care Med 166:559–600

    Google Scholar 

  • Coirault C, Chemla D, Lecarpentier Y (1999) Relaxation of diaphragm muscle. J Appl Physiol 87:1243–1252

    CAS  PubMed  Google Scholar 

  • D’Angelo E, Prandi E, Milic-Emili J (1993) Dependence of maximal flow-volume curves on time course of preceding inspiration. J Appl Physiol 70:2602–2610

    Google Scholar 

  • Eastwood PR, Hillman DR, Finucane KE (1994) Ventilatory responses to inspiratory threshold loading and role of muscle fatigue in task failure. J Appl Physiol 76:185–195

    Google Scholar 

  • Eastwood PR, Hillman DR, Morton AR, Finucane KE (1998) The effects of learning on the ventilatory responses to inspiratory threshold loading. Am J Respir Crit Care Med 158:1190–1196

    Google Scholar 

  • Esau SA, Bellemare F, Grassino A, Permutt S, Roussos C, Pardy RL (1983a) Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol 54:1353–1360

    CAS  PubMed  Google Scholar 

  • Esau SA, Bye PT, Pardy RL (1983b) Changes in rate of relaxation of sniffs with diaphragmatic fatigue in humans. J Appl Physiol 55:731–735

    CAS  PubMed  Google Scholar 

  • Flynn MG, Barter CE, Nosworthy JC, Pretto JJ, Rochford PD, Pierce RJ (1989) Threshold pressure training, breathing pattern, and exercise performance in chronic airflow obstruction. Chest 95:535–540

    CAS  PubMed  Google Scholar 

  • Green M, Road J, Sieck GC, Similowski T (2002) Tests of respiratory muscle strength. Am J Respir Crit Care Med 166:528–547

    Google Scholar 

  • Hamnegaard CH, Wragg S, Kyroussis D, Aquilina R, Moxham J, Green M (1994) Portable measurement of maximum mouth pressures. Eur Respir J 7:398–401

    PubMed  Google Scholar 

  • Hill AV (1938) The heat of shortening and dynamic constants of muscle. Proc R Soc 126:136–195

    Google Scholar 

  • Hyatt RE, Shilder DP, Fry DL (1958) Relationship between maximum expiratory flow and degree of lung inflation. J Appl Physiol 13:331–336.

    CAS  Google Scholar 

  • Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405

    CAS  PubMed  Google Scholar 

  • Johnson PH, Cowley AJ, Kinnear WJ (1997) Incremental threshold loading: a standard protocol and establishment of a reference range in naïve normal subjects. Eur Respir J 10:2868–2871

    Article  CAS  PubMed  Google Scholar 

  • Koulouris N, Vianna LG, Mulvey DA, Green M, Moxham J (1989) Maximal relaxation rates of sniffs and diaphragmatic fatigue in humans. Am Rev Respir Dis 139:1213–1217

    CAS  PubMed  Google Scholar 

  • Larson JL, Kim MJ (1987) Reliability of maximal inspiratory pressure. Nurs Res 36:317–319

    CAS  PubMed  Google Scholar 

  • Leblanc P, Summers E, Inman MD, Jones NL, Campbell EJ, Killian KJ (1988) Inspiratory muscles during exercise: a problem of supply and demand. J Appl Physiol 64:2482–2489

    CAS  PubMed  Google Scholar 

  • Leith DE, Brown R (1999) Human lung volumes and the mechanisms that set them. Eur Respir J 13:468–472

    Article  CAS  PubMed  Google Scholar 

  • Levy RD, Esau SA, Bye PT, Pardy RL (1984) Relaxation rate of mouth pressure with sniffs at rest and with inspiratory muscle fatigue. Am Rev Respir Dis 130:38–41

    CAS  PubMed  Google Scholar 

  • Mador MJ, Kufel TJ (1992) Effect of inspiratory muscle fatigue on inspiratory muscle relaxation rates in healthy subjects. Chest 102:1767–1773

    CAS  PubMed  Google Scholar 

  • Mador MJ, Magalang UJ, Rodis A, Kufel TJ (1993) Diaphragmatic fatigue after exercise in healthy human subjects. Am Rev Respir Dis 148:1571–155

    CAS  PubMed  Google Scholar 

  • Maillard JO, Burdet L, van Melle G, Fitting JW (1998) Reproducibility of twitch mouth pressure, sniff nasal inspiratory pressure, and maximal inspiratory pressure. Eur Respir J 11:901–5

    Article  CAS  PubMed  Google Scholar 

  • Martyn JB, Moreno RH, Pare PD, Pardy RL (1987) Measurement of inspiratory muscle performance with incremental threshold loading. Am Rev Respir Dis 135:919–923

    CAS  PubMed  Google Scholar 

  • McConnell AK, Copestake AJ (1999) Maximum static respiratory pressures in healthy elderly men and women: issues of reproducibility and interpretation. Respiration 66:251–258

    Article  CAS  PubMed  Google Scholar 

  • McCool FD, Hershenson MB, Tzelepis GE, Kikuchi Y, Leith DE (1992) Effect of fatigue on maximal inspiratory pressure-flow capacity. J Appl Physiol 73:36–43

    CAS  PubMed  Google Scholar 

  • McElvaney G, Blackie S, Morrison NJ, Wilcox PG, Fairbarn MS, Pardy RL (1989a) Maximal static respiratory pressures in the normal elderly. Am Rev Respir Dis 139:277–281

    CAS  PubMed  Google Scholar 

  • McElvaney G, Fairbarn MS, Wilcox PG, Pardy RL (1989b) Comparison of two-minute incremental threshold loading and maximal loading as measures of respiratory muscle endurance. Chest 96:557–563

    CAS  PubMed  Google Scholar 

  • Morrison NJ Fairbarn MS, Pardy RL (1989a) The effect of breathing frequency on inspiratory muscle endurance during incremental threshold loading. Chest 96:85–8

    CAS  PubMed  Google Scholar 

  • Morrison NJ, Richardson DPT, Dunn L, Pardy RL (1989b) Respiratory muscle performance in normal elderly subjects and patients with COPD. Chest 95:90–94

    CAS  PubMed  Google Scholar 

  • Mulvey DA, Koulouris NG, Elliott MW, Laroche CM, Moxham J, Green M (1991) Inspiratory muscle relaxation rate after voluntary maximal isocapnic ventilation in humans. J Appl Physiol 70:2173–2180

    Article  CAS  PubMed  Google Scholar 

  • Ng GY, Stokes MJ (1991) Maximal inspiratory and expiratory mouth pressures in sitting and half-lying positions in normal subjects. Respir Med 85:209–211

    CAS  PubMed  Google Scholar 

  • Nickerson BG, Keens TG (1982) Measuring ventilatory muscle endurance in humans as sustainable inspiratory pressure. J Appl Physiol 52:768–772

    CAS  PubMed  Google Scholar 

  • Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report working party standardisation of lung function tests, European Community for Steel and Coal. Official statement of the European Respiratory Society. Eur Respir J [Suppl] 16:5–40

  • Romer LM, McConnell AK, Jones DA (2002) Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 34:785–792

  • Smeltzer SC, Lavietes MH (1999) Reliability of maximal respiratory pressures in multiple sclerosis. Chest 115:1546–1552

    Article  CAS  PubMed  Google Scholar 

  • Tantucci C, Duguet A, Giampiccolo P, Similowski T, Zelter M, Derenne J-P (2002) The best peak expiratory flow is flow-limited and effort-independent in normal subjects. Am J Respir Crit Care Med 165:1304–1308

    Article  PubMed  Google Scholar 

  • Tzelepis GE, Zakynthinos S, Vassilakopoulos T, Geroulanos S, Roussos C (1997) Inspiratory maneuver effects on peak expiratory flow. Am J Respir Crit Care Med 156:1399–1404

    CAS  PubMed  Google Scholar 

  • Tzelepis GE, Kasas V, McCool FD (1999) Inspiratory muscle adaptations following pressure or flow training in humans. Eur J Appl Physiol Occup Physiol 79:467–471

    Article  CAS  PubMed  Google Scholar 

  • Viitasalo JT, Saukkonen S, Komi PV (1980) Reproducibility of measurements of selected neuromuscular performance variables in humans. Electromyogr Clin Neurophysiol 20:487–501

    CAS  PubMed  Google Scholar 

  • Wilson SH, Cooke NT, Edwards RH, Spiro SG. (1984) Predicted normal values for maximal respiratory pressures in Caucasian adults and children. Thorax 39:535–538

    CAS  PubMed  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, London

Download references

Acknowledgements

The experiments detailed in this report comply with the current laws of the country in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee M. Romer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romer, L.M., McConnell, A.K. Inter-test reliability for non-invasive measures of respiratory muscle function in healthy humans. Eur J Appl Physiol 91, 167–176 (2004). https://doi.org/10.1007/s00421-003-0984-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-003-0984-2

Keywords

Navigation