Skip to main content
Log in

A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Umbilical cord (UC) has been suggested as a new source of mesenchymal stem cells (MSCs). In this report, we isolated MSCs from the fetal UC of goat and investigated their multipotency of differentiation into germ cells in vitro, in the presence of 0–20 % bovine follicular fluid (FF). The phenotypes, capacity of proliferation and expression of MSC markers were served as the indexes of multipotency of the isolated UC-MSCs, those were ascertained by growth curves, RT-PCR and immunofluorescent staining, respectively. Our results showed that the UC-MSCs shared a similar immunophenotype to those cells reported in mouse and human bone marrow MSCs, as well as some characteristics seen in embryonic stem cells (ESCs). In addition, our data also demonstrated that a dose-dependent function of FF on the states of differentiation of goat UC-MSCs. From 2 to 20 % of the FF can promote the proliferation of goat UC-MSC, especially the 5 % concentration of follicular fluid promote proliferation was significantly higher than 2 %. In contrast, higher concentration of follicular fluid (>10 %) induced goat UC-MSCs differentiation into oocyte-like cells. These findings provide an efficient model to study the mechanism on cell proliferation and germ cell differentiation in livestock using FF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adesida AB, Mulet-Sierra A, Jomha NM (2012) Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Therapy 3:9

    Article  CAS  Google Scholar 

  • Baharvand H, Totonchi M, Taei A (2010) Human-induced pluripotent stem cells: derivation, propagation, and freezing in serum- and feeder layer-free culture conditions. Methods Mol Biol 584:425–443

    Article  PubMed  Google Scholar 

  • Barachini S, Trombi L, Danti S (2009) Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 18:293–305

    Article  PubMed  Google Scholar 

  • Cao H, Chu Y, Zhu H, Sun J, Pu Y, Gao Z, Chunrong Yang, Peng S, Dou Z, Hua J (2011) Characterization of immortalized mesenchymal stem cells derived from fetal porcine pancreas. Cell Prolif 44:19–32

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Chu Y, Lv X, Qiu P, Liu C, Zhang H, Li D, Peng S, Dou Z, Hua J (2012) GSK3 inhibitor-BIO regulates proliferation of immortalized mesenchymal stem cells derived from fetal porcine pancreas (iPMSCs). Plos One:e31502

  • Choong P-F, Mok P-L, Cheong S-K (2007) Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 9:170–183

    Article  PubMed  CAS  Google Scholar 

  • Clark AT, Bodnar MS, Fox M (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 13:727–739

    Article  PubMed  CAS  Google Scholar 

  • Danner S, Kajahn J, Geismann C (2007) Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 13:11–20

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Dyce P, Liu J, Tayade C, Betts D, Li J (2011) In vitro and In vivo germ line potential of stem cells derived from newborn mouse skin. PloS One 6:e20339

    Article  PubMed  CAS  Google Scholar 

  • Dyce PW, Wen L, Li J (2006) In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 8:384–390

    Article  PubMed  CAS  Google Scholar 

  • Erices A, Conget P, Minguell J (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  • Flynn A, Barry F, O’Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9:717–726

    Article  PubMed  CAS  Google Scholar 

  • Gode F, Gulekli B, Dogan E, Korhan P, Dogan S, Bige O, Cimrin D, Atabey N (2011) Influence of follicular fluid GDF9 and BMP15 on embryo quality. Fertil Steril 95:2274–2278

    Article  PubMed  CAS  Google Scholar 

  • Goodwin HS, Bicknese AR, Chien SN (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Griparic L, Vargas V (2009) A putative mesenchymal stem cells population isolated from adult human testes. Biochem Biophys Res Commun 385:570–575

    Article  PubMed  CAS  Google Scholar 

  • Harris DT (2008) Collection, processing, and banking of umbilical cord blood stem cells for clinical use in transplantation and regenerative medicine. Labmedicine 39:173–178

    Google Scholar 

  • Hua J, Pan S, Yang C (2009) Derivation of male germ cell-like lineage from human bone marrow stem cells. Biomed Reprod Online 19:99–105

    Article  CAS  Google Scholar 

  • Hua J, Qiu P, Zhu H, Cao H, Wang F, Li W (2011a) Multipotent mesenchymal stem cells (MSCs) from human umbilical cord: potential differentiation of germ cells. Afr J Biochem Res 5(4):113–123

    Google Scholar 

  • Hua J, Sidhu KS (2008) Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells Dev 17:399–411

    Article  PubMed  Google Scholar 

  • Hua J, Zhu H, Pan S, Liu C, Sun J, Ma X, Dong W, Liu W, Li W (2011b) Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis. Cell Reprogram (Cloning Stem Cells) 13:133–144

    Article  CAS  Google Scholar 

  • Hu Y, Sun J, Wang J, Wang L, Bai Y, Yu M, Lian Z, Zhang S, Hua J (2012) Characterization of female germ cells derived from mouse embryonic stem cells through expression of GFP under the control of Figla. J Cell Biochem 113:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Kang XQ, Zang WJ, Bao LJ (2006) Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 30:569–575

    Article  PubMed  CAS  Google Scholar 

  • Lacham-kaplan O, Chy H, Trounson A (2006) Testicular cell conditioned medium supports differentiation of embryonic stemcells into ovarian structures containing oocytes. Stem Cells 24:266–273

    Article  PubMed  Google Scholar 

  • Lee OK, Kuo TK, Chen WM (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Maniwa J, Izumi S, Isobe N, Terada T (2005) Studies on substantially increased proteins in follicular fluid of bovine ovarian follicular cysts using 2-D PAGE and MALDI-TOF MS. Reprod Biol Endocrinol 8:3–23

    Google Scholar 

  • Mareschi K, Biasin E, Piacibello W (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    PubMed  CAS  Google Scholar 

  • Martin-Rendon E, Sweeney D, Lu F (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95:137–148

    Article  PubMed  CAS  Google Scholar 

  • Nayernia K, Nolte J, Michelmann HW (2006) In vitro differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 11:125–132

    Article  PubMed  CAS  Google Scholar 

  • Panula S, Medrano JV, Kee K, Bergström R, Nguyen HN, Byers B, Wilson KD, Wu JC, Simon C, Hovatta O, Pera RAR (2011) Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet 20:752–762

    Article  PubMed  CAS  Google Scholar 

  • Pawar SS, Malakar D, De AK, Akshey YS (2009) Stem cell-like outgrowths from in vitro fertilized goat blastocysts. Indian J Exp Biol 47:635–642

    PubMed  CAS  Google Scholar 

  • Piedrahita JA, Moore K, Oetama BJ (1998) Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod 58: 3121–3129

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Rebelatto CK, Aguiar AM, Moretao M (2008) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913

    Article  CAS  Google Scholar 

  • Roobrouck VD, Vanuytsel K, Verfaillie CM (2011) Concise review: culture mediated changes in fate and/or potency of stem cells. Stem Cells 29:583–589

    Article  PubMed  CAS  Google Scholar 

  • Secco M, Moreira YB, Zucconi E (2009) Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev Rep 5:387–401

    Article  CAS  Google Scholar 

  • Secco M, Zucconi E, Vieira NM (2008) Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells 26:146–150

    Article  PubMed  CAS  Google Scholar 

  • Sottile V, Halleux C, Bassilana F (2002) Stem cell characteristics of human trabecular bone-derived cells. Bone 30:699–704

    Article  PubMed  CAS  Google Scholar 

  • Sun YL, Ping ZG, Li CJ, Sun YF, Yi KL, Chen L, Li XY, Wang XL, Zhou X (2011) Comparative proteomic analysis of follicular fluids from normal and cystic follicles in sows. Reprod Domest Anim. doi:10.1111/j.1439-0531

    Google Scholar 

  • Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, Ramasamy R (2011) Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 35(3):221–226

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 100:11457–11462

    Article  PubMed  CAS  Google Scholar 

  • von Otte S, Paletta JR, Becker S, König S, Fobker M, Greb RR, Kiesel L, Assmann G, Diedrich K, Nofer JR (2006) Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. J Biol Chem 281:5398–5405

    Article  Google Scholar 

  • Yu M, Xiao Z, Shen L (2004) Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol 124:666–675

    Article  PubMed  Google Scholar 

  • Zhang YN, Lie PC, Wei X (2009) Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 11:548–558

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Sun J, Pan S, Zhu H, Wang L, Hu Y, Cao H, Yan X, Hua J (2011) Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. J Cell Biochem 112:1009–1021

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Shen W, Hua J, Lei A, Lv C, Wang H, Yang C, Gao Z, Dou Z (2010) Pancreatic islet-like clusters from bone marrow mesenchymal stem cells of human first-trimester abortus can cure streptozocin-induced mouse diabetes. Rejuvenat Res 13:695–706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank for Dr. Xiaoming Liu to revise our manuscript. We appreciate the editor and reviewer’s excellent work and suggestions. This work was supported by grants from the Program (30972097) from National Natural Science Foundation of China, Key Program of State Education Ministry (109148), Program for New Century Excellent Talents in University (NCET-09-0654), Program of Shannxi Province (2011K02-06), The Fundamental Research Funds for the Central Universities (QN2011012), China Postdoctoral Science Foundation funded project (200801438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

418_2012_975_MOESM1_ESM.tif

Supplemented Figure.1 The 3 month fetal goat ovary was used as positive control for immunofluorescence staining. The ovarian germ cells were positive for Dazl, Vasa, ZP2, ZP3, and Stra8, respectively, bar = 25 μm. Supplementary material 1 (TIFF 5302 kb)

418_2012_975_MOESM2_ESM.tif

Supplemented Figure.2 The cultured goat oocyte was positive for Vasa, Dazl, ZP2, ZP3, Stra8 and Scp3, bar = 200 μm. Supplementary material 2 (TIFF 3213 kb)

418_2012_975_MOESM3_ESM.tif

Supplemented Figure.3 The cultured goat UC-MSCs were negative for CD14, CD79a, HLA-DR; positive for CD105, CD73, and CD90, respectively. Supplementary material 3 (TIFF 3254 kb)

418_2012_975_MOESM4_ESM.tif

Supplemented Figure.4 Goat UC-MSCs differentiated into cells positive for oil red-O staining (adipocyte-like cells, A, Induced group, B, Control, bar = 200 μm) and alizarin red staining (osteoblast-like cells, C, Induced group, D, Control, bar = 200 μm), the expression of PPAR-γ (E) and OPN (Osteocalcin, F) were increased in induced goat UC-MSCs. G, UC-MSCs were induced differentiated into cells positive for alcian blue staining, bar = 100 μm. Supplementary material 4 (TIFF 5883 kb)

418_2012_975_MOESM5_ESM.tif

Supplemented Figure.5 The frequency of large round cells was increased with the increasing concentration of FF after culture in vitro, A, 2% FF (A). 5% FF (B), 10% FF (C), 20% FF (D), Control (0% FF, E). A-D, bar = 400 μm; E, bar = 200 μm. Supplementary material 5 (TIFF 4729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, P., Bai, Y., Liu, C. et al. A dose-dependent function of follicular fluid on the proliferation and differentiation of umbilical cord mesenchymal stem cells (MSCs) of goat. Histochem Cell Biol 138, 593–603 (2012). https://doi.org/10.1007/s00418-012-0975-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0975-7

Keywords

Navigation