Skip to main content

Advertisement

Log in

The expression of LDL receptor in vessels with blood–brain barrier impairment in a stroke-prone hypertensive model

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

We previously reported that the blood–brain barrier (BBB) function was deteriorated in vessels located in the hippocampus in stroke-prone spontaneously hypertensive rats (SHRSP). In order to assess whether substances with oxidative stress such as amyloid-β (Aβ) can be scavenged in the BBB-damaged vessels, we examined the gene expression of representative efflux and influx transporters of Aβ, such as low-density lipoprotein receptor (LDLR), LDL-related protein 1 (LRP1), and the receptor for advanced glycation end product (RAGE) in the hippocampus of SHRSP with the BBB impairment and Wistar Kyoto rats (WKY) without the impairment. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis revealed that LDLR gene expression was increased in the samples of SHRSP compared with those of WKY, while there was no significant difference in LRP1 or RAGE gene expression between SHRSP and WKY. Western blot analysis revealed that the protein expression of LDLR was increased in the samples of SHRSP compared with those of WKY. Immunoelectron microscopic examination revealed that the LDLR expression was seen in the luminal and abluminal cytoplasmic membranes and vesicular structures of the endothelial cells and the cytoplasm of perivascular cells, especially in vessels with immunoreactivity of albumin showing increased vascular permeability. These findings suggest that the expression of LDLR was increased in the hippocampus of SHRSP compared with that of WKY and was seen in the luminal and abluminal cytoplasmic membranes and vesicular structures of endothelial cells, suggesting a role of LDLR in the vessels with BBB impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulkarim Y, Hameed Z (2006) Is the LDL receptor involved in cortical amyloid protein clearance? Neurochem Res 31:839–847

    Article  PubMed  CAS  Google Scholar 

  • Adler S, Huang H (2004) Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase. Am J Physiol Renal Physiol 287:F907–F913

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–S25

    Article  Google Scholar 

  • Bendayan M, Nanci A, Kan FW (1987) Effect of tissue processing on colloidal gold cytochemistry. J Histochem Cytochem 35:983–996

    PubMed  CAS  Google Scholar 

  • Bendayan R, Lee G, Bendayan M (2002) Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 57:365–380

    Article  PubMed  CAS  Google Scholar 

  • Bendayan R, Ronaldson PT, Gingras D, Bendayan M (2006) In situ localization of P-glycoprotein (ABCB1) in human and rat brain. J Histochem Cytochem 54:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Cao D, Fukuchi K, Wan H, Kim H, Li L (2006) Lack of LDL receptor aggravates learning and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 27:1632–1643

    Article  PubMed  CAS  Google Scholar 

  • Ceccheli R, Dehouck B, Descamps L, Fenart L, Buee-Scherrer VV, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliv Rev 36:165–178

    Article  Google Scholar 

  • Ceccheli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  CAS  Google Scholar 

  • Cirrito JR, Deane R, Fagan AM, Sprinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Hotzman DM (2005) P-glycoprotein deficiency at the blood–brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290

    Article  PubMed  CAS  Google Scholar 

  • Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160:101–112

    PubMed  CAS  Google Scholar 

  • Davis CG, Elhammer A, Russell DW, Schneider WJ, Kornfeld S, Brown MS, Goldstein JL (1986) Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. J Biol Chem 261:2828–2838

    PubMed  CAS  Google Scholar 

  • Davis CG, van Driel IR, Russell DW, Brown MS, Goldstein JL (1987) The low density lipoprotein receptor. Identification of aminoacids in cytoplasmic domain required for rapid endocytosis. J Biol Chem 262:4075–4082

    PubMed  CAS  Google Scholar 

  • Deane R, Du YS, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-β peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35:2628–2631

    Article  PubMed  CAS  Google Scholar 

  • Dehouck B, Dehouck MP, Fruchart JC, Cecchelli R (1994) Upregulation of the low density lipoprotein receptor at the blood–brain barrier: intercommunications between brain capillary endothelial cells and astrocytes. J Cell Biol 126:465–473

    Article  PubMed  CAS  Google Scholar 

  • Dehouck B, Fenart L, Dehouck MO, Pierce A, Torpier G, Cecchelli R (1997) A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 138:877–889

    Article  PubMed  CAS  Google Scholar 

  • Dohgu S, Yamauchi A, Takata F, Naito M, Takahashi T, Higuchi S, Sawada Y, Kataoka Y (2004) Transforming growth factor-β1 upregulated the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 24:491–497

    Article  PubMed  CAS  Google Scholar 

  • Fryer JD, DeMattos RB, McCormick LM, O’Dell MA, Spinner ML, Bales KR, Paul SM, Sullivan PM, Parsadanian M, Bu G, Holtman DM (2005) The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 280:25754–25759

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1976) The LDL pathway in human fibroblasts: a receptor-mediated mechanism for the regulation of cholesterol metabolism. Curr Top Cell Regul 11:147–181

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    Article  PubMed  CAS  Google Scholar 

  • Hazama F, Ooshima A, Tanaka T, Tomimoto K, Okamoto K (1975) Vascular lesions in the various substrains of spontaneously hypertensive rats and the effects of chronic salt ingestion. Jpn Circ J 39:7–22

    PubMed  CAS  Google Scholar 

  • Herz J, Marschang P (2003) Coaxing the LDL receptor family into the fold. Cell 112:289–292

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Liu D, Kameyama K, Nakashima T, Yokomise H, Ueno M, Miyake M (2004) MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene 23:7475–7483

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga Y, Ueno M, Ueki M, Huang C, Tomita S, Okamoto Y, Ogawa T, Ueda N, Maekawa N, Sakamoto H (2008) The osteopontin is increased in vessels with blood–brain barrier impairment. Neuropathol Appl Neurobiol 34:145–154

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Castellano JM, Jiang H, Basak JM, Parsadanian M, Pham V, Mason SM, Paul SM, Holtman DM (2009) Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular Aβ clearance. Neuron 64:632–644

    Article  PubMed  Google Scholar 

  • Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, SharomFJ, Reiner PB (2001) Beta-amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy OM, Oppenheim JJ, Wang JM (2001) Amyloid(beta)42 activates a G-protein-coupled chemoattractant receptor, FRP-like-1. J Neurosci 21:RC123–RC127

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 3:460–464

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  • Newman GR, Jasani B, Williams ED (1983) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15:543–555

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki S, Watanabe Y, Hori S, Suzuki H, Bhongsatiern J, Fujiyoshi M, Kamoi M, Kamiya N, Takanaga H, Terasaki T (2004) m RNA expression of the ATP-binding cassette transporter subfamily A (ABCA) in rat and human brain capillary endothelial cells. Biol Pharm Bull 27:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    PubMed  CAS  Google Scholar 

  • Okamoto K, Yamori Y, Nagaoka A (1974) Establishment of the stroke prone spontaneously hypertensive rat. Circ Res 34/35:143–153

    Google Scholar 

  • Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Sattler W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood–brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277:42781–42789

    Article  PubMed  CAS  Google Scholar 

  • Parks JK, Smith TS, Trimmer PA Jr, Bennett JP Jr, Parker WD (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Poon HF, Joshi G, Sultana R, Farr SA, Banks WA, Morley JE, Calabrese V, Butterfield DA (2004) Antisense directed at the Aβ region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res 1018:86–96

    Article  PubMed  CAS  Google Scholar 

  • Ruan XZ, Varghese Z, Fernando R, Moorhead JF (1998) Cytokine regulation of low-density lipoprotein receptor gene transcription in human mesangial cells. Nephrol Dial Transplant 13:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Sabbatini M, Strocchi P, Vitaioli L, Amenta F (2000) The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience 100:251–258

    Article  PubMed  CAS  Google Scholar 

  • Sabbatini M, Catalani A, Consoli C, Marletta N, Tomassoni D, Avola R (2002) The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia. Mech Ageing Dev 123:547–559

    Article  PubMed  CAS  Google Scholar 

  • Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV (2007) Clearance of amyloid-β by circulating lipoprotein receptors. Nat Med 13:1029–1031

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Stern D (2000) Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep 5:430–436

    Article  Google Scholar 

  • Schmidt AM, Yan SD, Wautier J-L, Stern D (1999) Activation of receptor for advanced glycation end products. A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497

    PubMed  CAS  Google Scholar 

  • Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood pressure, and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 32:59–64

    PubMed  CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar M, Calero J, Bading B, Frangione D, Holtzman C, Miller C, Strickland D, Ghiso J, Zlokovic B (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 106:1489–1499

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC, Russell DW, Goldstein JL, Brown MS, Sanchez-Pescador R, Bell GI (1985) Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science 228:893–895

    Article  PubMed  CAS  Google Scholar 

  • Tolleshaug H, Goldstein JL, Schneider WJ, Brown MS (1982) Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell 30:715–724

    Article  PubMed  CAS  Google Scholar 

  • Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang CL, Kanenishi K (2004) Blood–brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 107:532–538

    Article  PubMed  Google Scholar 

  • Ueno M, Nakagawa T, Huang C, Ueki M, Kusaka T, Hosomi N, Kanenishi K, Onodera M, Wu B, Sakamoto H (2009) The expression of P-glycoprotein is increased in vessels with blood–brain barrier impairment in a stroke-prone hypertensive model. Neuropathol Appl Neurobiol 35:147–155

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Ni Z, Oveisi F, Trnavsky-Hobbs DL (2000) Effect of antioxidant therapy on blood pressure, and NO synthase expression in hypertensive rats. Hypertension 36:957–964

    PubMed  CAS  Google Scholar 

  • Wardlaw JM, Sandercock PAG, Dennia MS, Starr J (2003) Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34:806–812

    Article  PubMed  CAS  Google Scholar 

  • Wautier J-L, Zoukourian C, Chappey O, Wautier M-P, Guillausseau P-J, Cao R, Hori O, Stern D, Schmidt AM (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. J Clin Invest 97:238–243

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmus MMM, Otte-Holler I, van Triel JJJ, Veerhuis R, Maat-Schieman MLC, Bu G, de Waal RMW, Verbeek MM (2007) Lipoprotein receptor-related protein-1 mediates amyloid-β-mediated cell death of cerebrovascular cells. Am J Pathol 171:1989–1999

    Article  PubMed  CAS  Google Scholar 

  • Yamori Y, Nagaoka A, Okamoto K (1974) Importance of genetic factors in hypertensive cerebrovascular lesions. Jpn Circ J 38:1095–1100

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2004) Clearing amyloid through the blood–brain barrier. J Neurochem 89:807–811

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a budget from the Ministry of Education, Culture, Sports, Science and Technology of Japan and a fund (M.O.) for exploratory research for young scientists from the Faculty of Medicine, Kagawa University, 2009. We would like to thank Ms M. Kawauchi for technical assistance and Ms A. Kimura for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueno, M., Wu, B., Nakagawa, T. et al. The expression of LDL receptor in vessels with blood–brain barrier impairment in a stroke-prone hypertensive model. Histochem Cell Biol 133, 669–676 (2010). https://doi.org/10.1007/s00418-010-0705-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0705-y

Keywords

Navigation