Skip to main content
Log in

Dynamics of leading lamellae of living fibroblasts visualized by high-speed scanning probe microscopy

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In this study, we aimed at improving the temporal resolution of scanning probe microscopy (SPM) for observing living cells by introducing soft cantilevers, low feedback-gain operations, and cantilever deflection imaging. We achieved visualization of the mechanical architecture in leading lamellae of living fibroblasts at a temporal resolution of around 10 s, which is higher than that of conventional contact-mode SPM. Time-lapse SPM could be used to monitor not only cytoskeletal dynamics but also the dynamics of numerous microgranules. Statistical analysis of microgranular motion revealed that the microgranules have superdiffusive behaviors and significant directional order of motion. We also found that the direction of their motion is correlated with the direction of growing actin stress fibers. The combination of SPM with fluorescence microscopy showed that vinculin, a component of cell-substratum adhesion sites, localizes at the microgranules. Our experimental data provides a new insight into the intracellular mechanical architecture and its structural dynamics, suggesting that high-speed live-cell SPM has great potential for investigating the structural origin of cellular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farré R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Anderson TW, Vaughan AN, Cramer LP (2008) Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol Biol Cell 19:5006–5018

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468–12472

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Dreckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010

    Article  CAS  PubMed  Google Scholar 

  • Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    Article  CAS  PubMed  Google Scholar 

  • Brown CM, Hebert B, Kolin DL, Zareno J, Whitmore L, Horwitz AR, Wiseman PW (2006) Probing the integrin-actin linkage using high-resolution protein velocity mapping. J Cell Sci 119:5204–5214

    Article  CAS  PubMed  Google Scholar 

  • Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4:557–561

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Biais N, Giannone G, Tanase M, Jiang G, Hofman JM, Wiggins CH, Silberzan P, Buguin A, Ladoux B, Sheetz MP (2006) Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys J 91:3907–3920

    Article  CAS  PubMed  Google Scholar 

  • Goffin JM, Pittet P, Csucs G, Lussi JW, Meister J-J, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol 172:259–268

    Article  CAS  PubMed  Google Scholar 

  • Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc Natl Acad Sci USA 100:5819–5822

    Article  CAS  PubMed  Google Scholar 

  • Greenwood JA, Durand D (1955) The distribution of length and components of the sum of n random unit vectors. Ann Math Stat 26:233–246

    Article  Google Scholar 

  • Grzywa EL, Lee AC, Lee GU, Suter DM (2006) High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy. J Neurobiol 66:1529–1543

    Article  CAS  PubMed  Google Scholar 

  • Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall GW Jr (2002) In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol 138:227–236

    Article  CAS  PubMed  Google Scholar 

  • Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258

    Article  CAS  PubMed  Google Scholar 

  • Hansma PK, Schitter G, Fantner GE, Prater C (2006) High-speed atomic force microscopy. Science 314:601–602

    Article  CAS  PubMed  Google Scholar 

  • Helenius J, Heisenberg C-P, Gaub HE, Müller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Henderson E, Haydon PG, Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257:1944–1946

    Article  CAS  PubMed  Google Scholar 

  • Hertz H (1882) Über die berührung fester elastischer körper. J Reine Angew Math 92:156–171

    Google Scholar 

  • Hirata H, Tatsumi H, Sokabe M (2007) Dynamics of actin filaments during tension-dependent formation of actin bundles. Biochim Biophys Acta 1770:1115–1127

    CAS  PubMed  Google Scholar 

  • Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115

    Article  CAS  PubMed  Google Scholar 

  • Le Grimellec C, Lesniewska E, Giocondi MC, Finot E, Vié V, Goudonnet JP (1998) Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J 75:695–703

    Article  CAS  PubMed  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Appl Math 11:431–441

    Google Scholar 

  • McGregor A, Blanchard AD, Rowe AJ, Critchley DR (1994) Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J 301:225–233

    CAS  PubMed  Google Scholar 

  • Menkel AR, Kroemker M, Bubeck P, Ronsiek M, Nikolai G, Jockusch BM (1994) Characterization of an F-actin-binding domain in the cytoskeletal protein vinculin. J Cell Biol 126:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    Article  CAS  PubMed  Google Scholar 

  • Picco LM, Bozec L, Ulcinas A, Engledew DJ, Antognozzi M, Horton MA, Miles MJ (2007) Breaking the speed limit with atomic force microscopy. Nanotechnology 18:044030

    Article  Google Scholar 

  • Picco LM, Dunton PG, Ulcinas A, Engledew DJ, Hoshi O, Ushiki T, Miles MJ (2008) High-speed AFM of human chromosomes in liquid. Nanotechnology 19:384018

    Article  Google Scholar 

  • Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 305:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  CAS  PubMed  Google Scholar 

  • Raspanti M, Congiu T, Guizzardi S (2001) Tapping-mode atomic force microscopy in fluid of hydrated extracellular matrix. Matrix Biol 20:601–604

    Article  CAS  PubMed  Google Scholar 

  • Rottner K, Hall A, Small JV (1999) Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9:640–648

    Article  CAS  PubMed  Google Scholar 

  • Schoenenberger CA, Hoh JH (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J 67:929–936

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Mizutani T, Haga H, Kawabata K (2007) Visualization of stretch-induced intracellular tensional response of single fibroblasts by mechanical scanning probe microscopy. Jpn J Appl Phys 46:5631–5635

    Article  CAS  Google Scholar 

  • Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447:592–595

    Article  CAS  PubMed  Google Scholar 

  • Vallotton P, Gupton SL, Waterman-Storer CM, Danuser G (2004) Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc Natl Acad Sci USA 101:9660–9665

    Article  CAS  PubMed  Google Scholar 

  • Waterman-Storer CM, Salmon ED (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139:417–434

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y, Shiga H, Asou H, Haga H, Kawabata K, Abe K, Ito E (1999) Dynamics of astrocyte adhesion as analyzed by a combination of atomic force microscopy and immuno-cytochemistry: the involvement of actin filaments and connexin 43 in the early stage of adhesion. Arch Histol Cytol 62:355–361

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Masayuki Takahashi (Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan) for the gift of anti-myosin-IIA antibody. We thank Dr. Koji Nemoto (Division of Physics, Graduate School of Science, Hokkaido University, Sapporo, Japan) for the valuable discussions. This study was supported by Grants-in-Aid for Exploratory Research (21654058) to K. K., Scientific Research (C) (21570158) to H. H., and JSPS Fellows (20.4710) to K. T. from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushi Tamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 610 kb)

Supplementary figure (AVI 712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, K., Mizutani, T., Haga, H. et al. Dynamics of leading lamellae of living fibroblasts visualized by high-speed scanning probe microscopy. Histochem Cell Biol 133, 59–67 (2010). https://doi.org/10.1007/s00418-009-0644-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0644-7

Keywords

Navigation