Skip to main content
Log in

Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Proteasomes are ATP-driven, multisubunit proteolytic machines that degrade endogenous proteins into peptides and play a crucial role in cellular events such as the cell cycle, signal transduction, maintenance of proper protein folding and gene expression. Recent evidence indicates that the ubiquitin-proteasome system is an active component of the cell nucleus. A characteristic feature of the nucleus is its organization into distinct domains that have a unique composition of macromolecules and dynamically form as a response to the requirements of nuclear function. Here, we show by systematic application of different immunocytochemical procedures and comparison with signature proteins of nuclear domains that during interphase endogenous proteasomes are localized diffusely throughout the nucleoplasm, in speckles, in nuclear bodies, and in nucleoplasmic foci. Proteasomes do not occur in the nuclear envelope region or the nucleolus, unless nucleoplasmic invaginations expand into this nuclear body. Confirmedly, proteasomal proteolysis is detected in nucleoplasmic foci, but is absent from the nuclear envelope or nucleolus. The results underpin the idea that the ubiquitin-proteasome system is not only located, but also proteolytically active in distinct nuclear domains and thus may be directly involved in gene expression, and nuclear quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amsterdam A, Pitzer F, Baumeister W (1993) Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. PNAS USA 90:99–103

    Article  PubMed  CAS  Google Scholar 

  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11

    Article  PubMed  Google Scholar 

  • Anton LC, Schubert U, Bacik I, Princiotta MF, Wearsch PA, Gibbs J, Day PM, Realini C, Rechsteiner MC, Bennink JR, Yewdell JW (1999) Intracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 146:113–124

    PubMed  CAS  Google Scholar 

  • Arabi A, Rustum C, Hallberg E, Wright APH (2003) Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 116:1707–1717

    Article  PubMed  CAS  Google Scholar 

  • Bravo R, MacDonald-Bravo H (1987) Existence of two populations of cyclin/proliferating cell nuclear antigen during the cell cycle: association with DNA replication sites. J Cell Biol 105:1529–1554

    Article  Google Scholar 

  • Chen M, Rockel T, Steinweger G, Hemmerich P, Risch J, von Mikecz A (2002) Subcellular recruitment of fibrillarin to nucleoplasmic proteasomes: implications for processing of a nucleolar autoantigen. Mol Biol Cell 13:3576–3587

    Article  PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel P (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17:6144–6154

    Article  PubMed  CAS  Google Scholar 

  • Fabunmi RP, Wigley WC, Thomas PJ, DeMartino GN (2001) Interferon γ regulates accumulation of proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J Cell Sci 114:29–36

    PubMed  CAS  Google Scholar 

  • Fakan S, Puvion E (1980) The ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 65:255–299

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R (2005) Molecular machines for protein degradation. Chembiochem 6:222–256

    Article  PubMed  CAS  Google Scholar 

  • Guillot PV, Xie SQ, Hollinshead M, Pombo A (2004) Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells. Exp Cell Res 295:460–468

    Article  PubMed  CAS  Google Scholar 

  • Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hugle B, Kleinschmidt JA, Franke WW (1983) The 22S cylinder particles of Xenopus laevis. II. Immunological characterization and localization of their proteins in tissues and cultured cells. Eur J Cell Biol 32:157–163

    PubMed  CAS  Google Scholar 

  • Hutschenreiter S, Tinazli A, Model K, Tampé R (2004) Two-substrate association with the 20S proteasome at single-molecule level. EMBO J 23:2488–2497

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ, Cook PR (1993) Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Kleinschmidt JA, Hugle B, Grund C, Franke WW (1983) The 22S cylinder particles of Xenopus laevis. I. Biochemical and electron microscopic characterization. Eur J Cell Biol 32:143–156

    PubMed  CAS  Google Scholar 

  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable tools for cell biologists. Trends Cell Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Mattsson K, Pokrovskaja K, Kiss C, Klein G, Szekely L (2001) Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci USA 98:1010–1017

    Article  Google Scholar 

  • Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192–201

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 20S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    PubMed  CAS  Google Scholar 

  • Reits EAJ, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094

    Article  PubMed  CAS  Google Scholar 

  • Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem Cytochem 40:1165–1172

    PubMed  CAS  Google Scholar 

  • Rockel TD, von Mikecz A (2002) Proteasome-dependent processing of nuclear proteins is correlated with their subnuclear localization. J Struct Biol 140:189–199

    Article  Google Scholar 

  • Rockel TD, Stuhlmann D, von Mikecz A (2005) Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 118:5231–5242

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Yanagida M (2005) Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8. Cell 122:393–405

    Article  PubMed  CAS  Google Scholar 

  • von Mikecz A (2006) The nuclear ubiquitin proteasome system (nUPS). J Cell Sci 119:1977–1984

    Article  CAS  Google Scholar 

  • von Mikecz A, Konstantinov K, Buchwald D, Gerace L, Tan EM (1997) High frequency of autoantibodies to insoluble cellular antigens in chronic fatigue syndrome. Arthritis Rheum 40:295–305

    Article  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labelling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  • Weidtkamp-Peters S, Rahn HP, Cardoso MC, Hemmerich P (2006) Replication of centromeric heterochromatin in mouse fibroblasts takes place in early, middle, and late S phase. Histochem Cell Biol 125:91–102

    Article  PubMed  CAS  Google Scholar 

  • Wojcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35:579–589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bart Sefton and Eng Tan for their generous donation of antibodies, and staff of the von Mikecz lab for encouragement and helpful comments. This work was supported by Deutsche Forschungsgemeinschaft through SFB 503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna von Mikecz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharf, A., Rockel, T.D. & von Mikecz, A. Localization of proteasomes and proteasomal proteolysis in the mammalian interphase cell nucleus by systematic application of immunocytochemistry. Histochem Cell Biol 127, 591–601 (2007). https://doi.org/10.1007/s00418-006-0266-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0266-2

Keywords

Navigation