Skip to main content

Advertisement

Log in

Changes of extracellular matrix of the cornea in diabetes mellitus

  • Cornea
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Differences in corneal viscoelasticity due to diabetes have been reported to have a protective effect on the progression of glaucoma and the development and progression of keratoconus. Due to longterm changes of tissue in diabetes mellitus, biomechanical changes of the cornea because of glycation and modified extracellular matrix may be detectable. The purpose of the study was to determine whether there is a difference in corneal biomechanical properties, characterized by corneal hysteresis (CH) and central corneal thickness (CCT), between diabetic and normal subjects, and relate these to the duration of diabetes.

Method

In a cross sectional study, a group of 484 eyes including 99 eyes of diabetic individuals was evaluated. CH as measured with the Ocular Response Analyzer, CCT (Orbscan II), Goldmann applanation tonometry (GAT) and slit-lamp examination were obtained from each patient. Linear mixed models were applied for statistical evaluation.

Results

CH showed a significant decrease with age (-0.036 mmHg/year, p < 0.01) while CCT increased significantly (+0.7 µm/year, p < 0.001). CH was significantly higher in diabetic eyes with an average difference of +0.55 mmHg (after correcting for age, IOP and CCT). This was not related to the duration of diabetes (mean 12.6 ± 9.0y, p = 0.522). CCT did not differ with regard to diabetes. Intraclass correlation coefficients were 81% and 50% for CCT and CH respectively.

Conclusion

CH is assumed to be an indicator for acquired changes of tissue such as diabetes-mediated. CCT is a more characteristic parameter for the individual patient. CH may provide more information about changes of the extracellular matrix in diabetes, and therefore offer a new monitoring parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Seiler T, Huhle M, Spoerl E, Kunath H (2000) Manifest Diabetes and keratoconus: a retrospective case-control study. Graefes Arch Clin Exp Ophthalmol 238:822–825. doi:10.1007/s004179900111

    Article  PubMed  CAS  Google Scholar 

  2. Kuo IC, Broman A, Pirouzmanesh A, Melia M (2006) Is there an association between Diabetes and Keratoconus? Ophthalmology 113:184–190. doi:10.1016/j.ophtha.2005.10.009

    Article  PubMed  Google Scholar 

  3. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson MR, Kass MA (2002) The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120:714–720

    PubMed  Google Scholar 

  4. Krueger RR, Ramos-Esteban JC (2007) How might corneal elasticity help us understand diabetes and intraocular pressure? J Refract Surg 23:85–88

    PubMed  Google Scholar 

  5. Quigley HA (2009) Can diabetes be good for glaucoma? Why can’t we believe our own eyes (or data)? Arch Ophthalmol 127(2):227–229

    Article  PubMed  Google Scholar 

  6. Edmund C (1988) Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol (Copenh) 66:134–140

    Article  CAS  Google Scholar 

  7. Andreassen TT, Simonsen AH, Oxlund H (1980) Biomechanical properties of Keratoconus and normal corneas. Exp Eye Res 31:435–441. doi:10.1016/S0014-4835(80)80027-3

    Article  PubMed  CAS  Google Scholar 

  8. Klein BE, Klein R, Jensen SC (1994) Open-angle glaucoma and older-onset diabetes. The Beaver Dam eye study. Ophthalmology 101:1173–1177

    PubMed  CAS  Google Scholar 

  9. Mitchell P, Smith W, Chey T, Healey PR (1997) Open-angle glaucoma and diabetes: The Blue Mountains Eye Study, Australia. Ophthalmology 104:712–718

    PubMed  CAS  Google Scholar 

  10. Dielemans J, de Jong PT, Stolk R, Vingerling JR, Grobbee DE, Hofman A (1996) Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. The Rotterdam Study. Ophthalmology 103:1271–1275

    PubMed  CAS  Google Scholar 

  11. Luce DA (2005) Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 31:156–162. doi:10.1016/j.jcrs.2004.10.044

    Article  PubMed  Google Scholar 

  12. Hager A, Loge K, Schroeder B, Füllhas MO, Großherr M, Wiegand W (2007) Changes of corneal hysteresis following clear corneal cataract surgery. Am J Ophthalmol 144:341–346. doi:10.1016/j.ajo.2007.05.023

    Article  PubMed  Google Scholar 

  13. Schroeder B, Hager A, Kutschan A, Wiegand W (2008) [Measurement of viscoelastic corneal parameters (corneal hysteresis) in patients with primary open angle glaucoma]. Ophthalmologe 105(10):916–920 (German)

    Article  PubMed  CAS  Google Scholar 

  14. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875. doi:10.1016/j.ajo.2005.12.007

    Article  PubMed  Google Scholar 

  15. Hjortdal JO, Jensen PK (1995) Extensibility of the normo-hydrated human cornea. Acta Ophthalmol Scand 73:12–17

    Article  PubMed  CAS  Google Scholar 

  16. Duck F (1990) Physical properties of tissue. University Press, Cambridge

    Google Scholar 

  17. Laiquzzaman M, Bhojwani R, Cunliffe I, Shah S (2006) Diurnal variation of ocular hysteresis in normal subjects: relevance in clinical context. Clin Experiment Ophthalmol 34:114–118. doi:10.1111/j.1442-9071.2006.01185.x

    Article  PubMed  Google Scholar 

  18. Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK (2005) Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci 46:409–414. doi:10.1167/iovs.04-0162

    Article  PubMed  Google Scholar 

  19. Su DHW, Wong TY, Wong W, Saw S, Tan DTH, Shen SY et al (2008) Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology 115:964–968. doi:10.1016/j.ophtha.2007.08.021

    Article  PubMed  Google Scholar 

  20. Lee JS, Oum BS, Choi HY, Lee JE, Cho BM (2006) Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye 20:315–318. doi:10.1038/sj.eye.6701868

    Article  PubMed  CAS  Google Scholar 

  21. O’Donnell C, Efron N (2006) Corneal hydration control in contact lens wearers with diabetes mellitus. Optom Vis Sci 83:22–26. doi:10.1097/01.opx.0000195568.81052.c4

    Article  PubMed  Google Scholar 

  22. Wolfs RC, Burger PH, Ramrattan RS, Klaver CC, Hulsman CA, Hofman A, Vingerling JR, Hitchings RA, de Jong FH (2000) Changing views on open angle glaucoma: definitions and prevalences – the Rotterdam Study. Invest Ophthalmol Vis Sci 41:3309–3321

    PubMed  CAS  Google Scholar 

  23. de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Witteman JCM, Hofman A, de Jong FH (2006) Is diabetes mellitus a risk factor for open-angle glaucoma? Ophthalmology 113:1827–1831. doi:10.1016/j.ophtha.2006.03.063

    Article  PubMed  Google Scholar 

  24. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet induced collagen cross linking for the treatment of keratoconus. Am J Ophthalmol 135:620–627. doi:10.1016/S0002-9394(02)02220-1

    Article  PubMed  CAS  Google Scholar 

  25. Sady C, Koshrot S, Nagaraj R (1995) Advanced Maillard reaction and cross-linking of corneal collagen in diabetes. Biochem Biophys Res Commun 214:793–797. doi:10.1006/bbrc.1995.2356

    Article  PubMed  CAS  Google Scholar 

  26. Kaji Y, Usui T, Oshika T, Matsubara M, Yamashita H, Araie M, Murata T, Ishibashi T, Nagai R, Horiuchi S, Amano S (2000) Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci 41:362–368

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hager.

Additional information

Funding/Support: none

Financial disclosures: none

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, A., Wegscheider, K. & Wiegand, W. Changes of extracellular matrix of the cornea in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 247, 1369–1374 (2009). https://doi.org/10.1007/s00417-009-1088-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1088-4

Keywords

Navigation