Skip to main content
Log in

The breakage–fusion–bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma

  • Research article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Osteosarcoma (OS) is characterized by chromosomal instability and high copy number gene amplification. The breakage–fusion–bridge (BFB) cycle is a well-established mechanism of genome instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. To determine whether the BFB cycle could be increasing the de novo rate of formation of cytogenetic aberrations in OS, the frequency of anaphase bridge configurations and dicentric chromosomes in four OS cell lines was quantified. An increased level of anaphase bridges and dicentrics was observed in all the OS cell lines. There was also a strong association between the frequencies of anaphase bridges, dicentrics, centrosomal anomalies, and multipolar mitotic figures in all the OS cell lines, indicating a possible link in the mechanisms that led to the structural and numerical instabilities observed in OS. In summary, this study has provided strong support for the role of the BFB cycle in generating the extensive structural chromosome aberrations, as well as cell-to-cell cytogenetic variation observed in OS, thus conferring the genetic diversity for OS tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akerman M, Dreinhofer K, Rydholm A, Willen H, Mertens F, Mitelman F, Mandahl N (1996) Cytogenetic studies on fine-needle aspiration samples from osteosarcoma and Ewing’s sarcoma. Diagn Cytopathol 15:17–22

    Article  PubMed  CAS  Google Scholar 

  • Al-Romaih K, Bayani J, Vorobyova J, Karaskova J, Park PC, Zielenska M, Squire JA (2003) Chromosomal instability in osteosarcoma and its association with centrosome abnormalities. Cancer Genet Cytogenet 144:91–99

    Article  PubMed  CAS  Google Scholar 

  • Atiye J, Wolf M, Kaur S, Monni O, Bohling T, Kivioja A, Tas E, Serra M, Tarkkanen M, Knuutila S (2005) Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 42:158–163

    Article  PubMed  CAS  Google Scholar 

  • Bayani J, Zielenska M, Pandita A, Al-Romaih K, Karaskova J, Harrison K, Bridge JA, Sorensen P, Thorner P, Squire JA (2003) Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 36:7–16

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Haber JE (1998) Chromosome break-induced DNA replication leads to nonreciprocal translocations and telomere capture. Genetics 150:1037–1047

    PubMed  CAS  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9:M57–60

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE (1998) Masquerading repeats: paralogous pitfalls of the human genome. Genome Res 8:758–762

    PubMed  CAS  Google Scholar 

  • Ghadimi BM, Sackett DL, Difilippantonio MJ, Schrock E, Neumann T, Jauho A, Auer G, Ried T (2000) Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27:183–190

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D (2003) Chromosome instability in cancer: how, when, and why? Adv Cancer Res 87:1–29

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Hoglund M, Mertens F, Mandahl N (1999) Variable stability of chromosomes containing amplified alpha-satellite sequences in human mesenchymal tumours. Chromosoma 108:271–277

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Pettersson L, Hoglund M, Heidenblad M, Gorunova L, Wiegant J, Mertens F, Dal Cin P, Mitelman F, Mandahl N (2000) Chromosomal breakage–fusion–bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA 97:5357–5362

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Jonson T, Yu C, Martins C, Mandahl N, Wiegant J, Jin Y, Mertens F, Jin C (2002) Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres. Br J Cancer 87:202–207

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Palsson E, Yu C, Mertens F, Mandahl N (2004) Mitotic instability associated with late genomic changes in bone and soft tissue tumours. Cancer Lett 206:69–76

    Article  PubMed  CAS  Google Scholar 

  • Gollin SM (2004) Chromosomal instability. Curr Opin Oncol 16:25–31

    Article  PubMed  Google Scholar 

  • Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397

    Article  PubMed  Google Scholar 

  • Jin Y, Jin C, Wennerberg J, Hoglund M, Mertens F (2001) Cytogenetic and fluorescence in situ hybridization characterization of chromosome 8 rearrangements in head and neck squamous cell carcinomas. Cancer Genet Cytogenet 130:111–117

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ, Sharp PA, Latt SA (1983) Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol 3:699–711

    PubMed  CAS  Google Scholar 

  • Lim G, Karaskova J, Vukovic B, Bayani J, Beheshti B, Bernardini M, Squire JA, Zielenska M (2004) Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Cancer Genet Cytogenet 153:158–164

    Article  PubMed  CAS  Google Scholar 

  • Lim G, Karaskova J, Beheshti B, Vukovic B, Bayani J, Selvarajah S, Watson SK, Lam WL, Zielenska M, Squire JA (2005) An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage–fusion–bridge cycle events in osteosarcoma. Genes Chromosomes Cancer 42:392–403

    Article  PubMed  CAS  Google Scholar 

  • Lo AW, Sprung CN, Fouladi B, Pedram M, Sabatier L, Ricoul M, Reynolds GE, Murnane JP (2002) Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells. Mol Cell Biol 22:4836–4850

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  • Masuda A, Takahashi T (2002) Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21:6884–6897

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26:234–282

    Google Scholar 

  • Mertens F, Mandahl N, Orndal C, Baldetorp B, Bauer HC, Rydholm A, Wiebe T, Willen H, Akerman M, Heim S et al (1993) Cytogenetic findings in 33 osteosarcomas. Int J Cancer 55:44–50

    PubMed  CAS  Google Scholar 

  • Michor F, Iwasa Y, Vogelstein B, Lengauer C, Nowak MA (2005) Can chromosomal instability initiate tumorigenesis? Semin Cancer Biol 15:43–49

    Article  PubMed  CAS  Google Scholar 

  • Mitelman F (1995) An International System for Human Cytogenetic Nomenclature (ISCN 1995). S. Karger, Basel

  • Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Ie M, Vogelstein B, Lengauer C (2002) The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99:16226–16231

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer P, Goedecke W, Kuhfittig-Kulle S, Obe G (2004) Pathways of DNA double-strand break repair and their impact on the prevention and formation of chromosomal aberrations. Cytogenet Genome Res 104:7–13

    Article  PubMed  CAS  Google Scholar 

  • Reshmi SC, Saunders WS, Kudla DM, Ragin CR, Gollin SM (2004) Chromosomal instability and marker chromosome evolution in oral squamous cell carcinoma. Genes Chromosomes Cancer 41:38–46

    Article  PubMed  CAS  Google Scholar 

  • Saunders W (2005) Centrosomal amplification and spindle multipolarity in cancer cells. Semin Cancer Biol 15:25–32

    Article  PubMed  CAS  Google Scholar 

  • Scheel C, Schaefer KL, Jauch A, Keller M, Wai D, Brinkschmidt C, van Valen F, Boecker W, Dockhorn-Dworniczak B, Poremba C (2001) Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene 20:3835–3844

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T (2005) When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res 302:233–243

    Article  PubMed  CAS  Google Scholar 

  • Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, Moldovan L, Zielenska M (2003) High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 38:215–225

    Article  PubMed  CAS  Google Scholar 

  • Stewenius Y, Gorunova L, Jonson T, Larsson N, Hoglund M, Mandahl N, Mertens F, Mitelman F, Gisselsson D (2005) Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA 102:5541–5546

    Article  PubMed  CAS  Google Scholar 

  • Stock C, Kager L, Fink FM, Gadner H, Ambros PF (2000) Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 28:329–336

    Article  PubMed  CAS  Google Scholar 

  • Tarkkanen M, Karhu R, Kallioniemi A, Elomaa I, Kivioja AH, Nevalainen J, Bohling T, Karaharju E, Hyytinen E, Knuutila S et al (1995) Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization. Cancer Res 55:1334–1338

    PubMed  CAS  Google Scholar 

  • Toledo F, Le Roscouet D, Buttin G, Debatisse M (1992) Co-amplified markers alternate in megabase long chromosomal inverted repeats and cluster independently in interphase nuclei at early steps of mammalian gene amplification. EMBO J 11:2665–2673

    PubMed  CAS  Google Scholar 

  • Tomescu O, Barr FG (2001) Chromosomal translocations in sarcomas: prospects for therapy. Trends Mol Med 7:554–559

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ, Hamlin JL (1989) Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev 3:1913–1925

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y (2000) Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120:91–98

    Article  PubMed  CAS  Google Scholar 

  • Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR (2001) Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 114:3529–3542

    PubMed  Google Scholar 

  • Wang Y, Putnam CD, Kane MF, Zhang W, Edelmann L, Russell R, Carrion DV, Chin L, Kucherlapati R, Kolodner RD, Edelmann W (2005) Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37:750–755

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW (2002) Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109:811–821

    Article  PubMed  CAS  Google Scholar 

  • Zielenska M, Bayani J, Pandita A, Toledo S, Marrano P, Andrade J, Petrilli A, Thorner P, Sorensen P, Squire JA (2001) Comparative genomic hybridization analysis identifies gains of 1p35 approximately p36 and chromosome 19 in osteosarcoma. Cancer Genet Cytogenet 130:14–21

    Article  PubMed  CAS  Google Scholar 

  • Zielenska M, Marrano P, Thorner P, Pei J, Beheshti B, Ho M, Bayani J, Liu Y, Sun BC, Squire JA, Hao XS (2004) High-resolution cDNA microarray CGH mapping of genomic imbalances in osteosarcoma using formalin-fixed paraffin-embedded tissue. Cytogenet Genome Res 107:77–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by funding from the National Cancer Institute of Canada and Canadian Institute of Health Research (Ph.D. fellowship to S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy A. Squire.

Additional information

Communicated by E.A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvarajah, S., Yoshimoto, M., Park, P.C. et al. The breakage–fusion–bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma. Chromosoma 115, 459–467 (2006). https://doi.org/10.1007/s00412-006-0074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0074-4

Keywords

Navigation