Skip to main content

Advertisement

Log in

Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 12 January 2010

Abstract

Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of −0.25 to 0.14‰ for olivine, −0.17 to 0.17‰ for orthopyroxene, −0.21 to 0.27‰ for clinopyroxene, and −0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobatometer: implications for the oxidation-state of the upper mantle. Contrib Miner Petrol 107:27–40

    Article  Google Scholar 

  • Beard BL, Johnson CM (2004) Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim Cosmochim Acta 68:4727–4743

    Article  Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117

    Article  Google Scholar 

  • Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom Ion Phys 197:191–195

    Google Scholar 

  • Brady JD (1995) Diffusion data for silicate minerals, glasses and liquids. In: Mineral physics and crystallography: a handbook of physical constants, AGU Reference Shelf 2, American Geophysical Union, pp 269–289

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II: new thermobarometers, and practical assessment of existing thermo barometers. J Petrol 31:1353–1378

    Google Scholar 

  • Cascio MLo, Liang MY, Hess PC (2004) Grain-scale processes during isothermal-isobaric melting of lherzolite. Geophys Res Lett 31:L16605

    Article  Google Scholar 

  • Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos 56:267–301

    Article  Google Scholar 

  • Chi JS, Lu FX (1996) The study of formation condition of primary diamond deposits in China. China University of Geosciences, Beijing, pp 144 (in Chinese)

  • Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Marty B, Janney PE (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 292:2077–2080

    Article  Google Scholar 

  • Dauphas N, van Zuilen M, Busigny V, Lepland A, Wadhwa M, Janney PE (2007) Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: Protolith identification and metamorphic overprint. Geochim Cosmochim Acta 71:4745–4770

    Article  Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) Kinberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 289–29

  • Dobbs PN, Duncan DJ, Hu S, Shee SR, Colgan E, Brown MA, Smith CB, Allsopp HL (1994) The geology of the Mengyin kimberlites, Shangdong, China. In: Meyer HOA, Leonardos OH (eds) Proceedings of 5th international kimberlites conference 1. Diamonds: characterization, genesis and exploration. CPRM, Brasilia, pp 106–115

  • Fan Q, Hooper PR (1991) The Cenozoic basaltic rocks of Eastern China: petrology and chemical composition. J Petrol 32:765–810

    Google Scholar 

  • Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41:933–950

    Article  Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322

    Article  Google Scholar 

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower MFJ, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. American Geophysical Union, Washington, DC, Geodynamics Series 27, pp 107–126

  • Harte B, Winterburn PA, Gurney JJ (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: Menzies MA, Hawke worth CJ (eds) Mantle Metasomatism. Academic Press Geology Series, pp 145–220

  • Hellebrand E, Snow JE, Dick HJB, Hoffman AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Johnson CM, Beard BL, Beukres NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib Miner Petrol 144:523–547

    Google Scholar 

  • Johnson CM, Beard BL, Klein C, Beukres NJ, Roden EE (2008) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72:151–169

    Article  Google Scholar 

  • Kusky TM, Li JH, Tucker RD (2001) The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292:1142–1145

    Article  Google Scholar 

  • Li ZH, Zhu XK, Tang SH (2008) Characters of Fe isotopes and rare earth elements of banded iron formations from AnShan-Benxi area: implication for Fe source. Acta Petrol Et Miner 27:285–290

    Google Scholar 

  • Liermann HP, Ganguly J (2002) Diffusion kinetics of Fe2+ and Mg in aluminous spinel: experimental determination and applications. Geochim Cosmochim Acta 66:2903–2913

    Article  Google Scholar 

  • Liu RX, Chen WJ, Sun JZ, Li DM (1992) The K-Ar age and tectonic environment of Cenozoic volcanic rock in China (in Chinese). In: Liu RX (ed) The age and geochemistry of Cenozoic volcanic rock in China. Seismologic Press, pp 1–43

  • Liu CQ, Masuda A, Xie GH (1994) Major- and trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem Geol 114:19–42

    Article  Google Scholar 

  • Liu YS, Gao S, Lee CT, Hu SH, Liu XM, Yuan HL (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57

    Article  Google Scholar 

  • Menzies MA, Fan WM, Zhang M (1993) Paleozoic and Cenozoic lithoprobes and the loss of 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society, Special Publication, vol 76, pp 71–81

  • Nielson JE, Noller JS (1987) Processes of mantle metasomatism: constraints from observations of composite xenoliths. In: Morris EM, Pasteris JD (eds) Mantle metasomatism and alkaline magmatism. Geological Society, Special Publication, vol 21, pp 61–76

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study. Contrib Miner Petrol 109:98–113

    Article  Google Scholar 

  • Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147

    Article  Google Scholar 

  • Poitrasson F, Halliday AN, Lee DC, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223:253–266

    Article  Google Scholar 

  • Poitrasson F, Levasseur S, Teutsch N (2005) Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet Sci Lett 234:151–164

    Article  Google Scholar 

  • Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865

    Article  Google Scholar 

  • Rampone E, Bottazzi P, Ottolini L (1991) Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotiteds. Nature 354:518–520

    Article  Google Scholar 

  • Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron isotope fractionation during oceanic crust alteration. Chem Geol 202:155–182

    Article  Google Scholar 

  • Rudnick RL, Gao S, Ling WL, Liu YS, Mcdonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77:609–637

    Article  Google Scholar 

  • Schoenberg R, von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252:342–359

    Article  Google Scholar 

  • Schoenberg R, Marks MAW, Schuessler JA, von Blanckenburg F, Markl G (2009) Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland. Chem Geol 258:65–77

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91

    Article  Google Scholar 

  • Seyler, Bonatti E (1994) Na, Al4 and Al6 in clinopyroxenes of continental and suboceanic ridge peridotites: a clue to different melting processes in the mantle? Earth Planet Sci Lett 122:281–289

    Google Scholar 

  • Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53:97–113

    Article  Google Scholar 

  • Tang SH, Zhu XK, Cai JJ, Li SZ, He XX, Wang JH (2006) Chromatographic separation of Cu, Fe and Zn using AG-MP-1 anion exchange resin for isotope determination by MC-ICPMS. Rock Miner Anal 251:5–8 (in Chinese with English abstract)

    Google Scholar 

  • Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Ying JF, Zhang J, Liu XM (2008) Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 101:435–452

    Article  Google Scholar 

  • Tatsumoto M, Basu AR, Huang WK, Wang JW, Xie GH (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320:1620–1622

    Article  Google Scholar 

  • Turner S, Bourdon B, Hawkesworth C, Evans P (2004) 226Ra−230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the Tonga–Kermadec island arc. Earth Planet Sci Lett 179:581–593

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Miner Petrol 62:129–139

    Article  Google Scholar 

  • Weyer S (2008) What drives iron isotope fractionation in magma? Science 320:1600–1601

    Article  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Article  Google Scholar 

  • Weyer S, Anbar AD, Brey GP, Munker C, Mezger K, Woodland AB (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Article  Google Scholar 

  • Weyer S, Anbar AD, Brey GP, Munker C, Mezger K, Woodland AB (2007) Fe-isotope fractionation during partial melting on Earth and the current view on the Fe-isotope budgets of the planets—(reply to the comment of F. Poitrasson and to the comment of B.L. Beard and C.M. Johnson on “Iron isotope fractionation during planetary differentiation” by S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland). Earth Planet Sci Lett 256:638–646

  • Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust-mantle beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31:817–820

    Article  Google Scholar 

  • Williams HM, McCammon C, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304:1656–1659

    Article  Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452

    Article  Google Scholar 

  • Wood BJ (1990) An experimental test of the spinel peridotite oxygen barometer. J Geophys Res 95:15845–15851

    Article  Google Scholar 

  • Xu YG (2002) Evidence for crustal components in the mantle and constrains on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China. Chem Geol 182:301–322

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (1998) The nature of the Cenozoic lithosphere at Nushan, eastern China. In: Flower MFJ, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. American Geophysics Union, Geodynamic Series 27, pp 167–196

  • Yang JH, Wu FY, Wilde SA (2003) A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China craton: an association with lithospheric thinning. Ore Geol Rev 23:125–152

    Article  Google Scholar 

  • Ying JF, Zhang HF, Kita N, Morishita Y, Shimoda G (2006) Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotic xenoliths from Junan, Shandong Province, China. Earth Planet Sci Lett 244:622–638

    Article  Google Scholar 

  • Zhang HF (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237:768–780

    Article  Google Scholar 

  • Zhang HF, Sun M (2002) Geochemistry of Mesozoic basalts and mafic dikes, southeastern North China Craton, and tectonic implications. Int Geol Rev 44:370–382

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Miner Petrol 144:241–253

    Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM, Zheng JP (2003) Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta 67:4373–4387

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou MF, Fan WM, Zhou XH, Zhai MG (2004) Highly heterogeneous late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol Mag 141:55–62

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y (2009) Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os-Sr-Nd isotopic constraints. J Geol Soc Lond 166:249–259

    Article  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA, Sun M (2000) Metamorphism of basement rocks in the Central Zone of the North China craton: implications for Paleoproterozoic tectonic evolution. Precamb Res 103:55–88

    Article  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precamb Res 107:45–73

    Article  Google Scholar 

  • Zhao XM, Zhang HF, Zhu XK, Zhang WH, Yang YH, Tang YJ (2007) Metasomatism of mesozoic and cenozoic lithospheric mantle beneath the north china craton: Evidence from phlogopite-bearing mantle xenoliths. Acta Petrol Sin 23(6):1281–1293 (in Chinese with English abstract)

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66

    Article  Google Scholar 

  • Zhou XH, Armstrong RL (1982) Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth Planet Sci Lett 58:301–329

    Article  Google Scholar 

  • Zhou XH, Sun M, Zhang GH, Chen SH (2002) Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos 62:111–124

    Article  Google Scholar 

  • Zhu XK, O’Nions RK, Guo YL, Reynolds BC (2000) Secular variation of iron isotopes in North Atlantic Deep Water. Science 287:2000–2002

    Article  Google Scholar 

  • Zhu XK, O’Nions RK, Guo Y, Young ED, Ash RD (2001) Isotope homogeneity of iron in the early solar nebula. Nature 412:311–313

    Article  Google Scholar 

  • Zhu XK, Guo Y, Williams RJP, O’Nions RK, Matthews A, Belshaw NS, Canters GW, de Waal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Article  Google Scholar 

  • Zhu XK, Li ZH, Zhao XM, Tang SH, Li YH (2008a) Fe isotope characteristics of early Precambrian pyrite deposits and their geological significance: examples from Shandong and Hebei Provinces. Acta Petrol Et Miner 27:429–434

    Google Scholar 

  • Zhu XK, Li ZH, Zhao XM, Tang SH, He XX, Nick S. Belshaw (2008b) High-precision measurements of Fe isotopes using MC-ICP-MS and Fe isotope compositions of geological reference materials. Acta Petrol Et Miner 27:263–272

Download references

Acknowledgments

This research was financially supported by the National Science Foundation of China Grants: (90714008; 40534022 to HF Zhang and Grants: 40473005; 40325008 to XK Zhu). Constructive comments given by Associate editor and two reviewers are highly appreciated, which improves the quality of the manuscript greatly. W. Powell and Min Zhang are thanked for their assistance in oxygen fugacity calculation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinmiao Zhao or Xiangkun Zhu.

Additional information

Communicated by F. Poitrasson.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00410-010-0488-0

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Text 1 (DOC 47.5 kb)

Supplementary Text 2 (DOC 75.0 kb)

Supplementary Table 1 (DOC 237 kb)

Supplementary Table 2 (DOC 86.5 kb)

Supplementary Table 3 (DOC 50.0 kb)

410_2009_461_MOESM6_ESM.eps

Supplementary Fig. 1 Mineral compositional plots for the Hannuoba and Hebi spinel lherzolites. Data from Table 1. Open field for off-craton spinel peridotites worldwide and grey field for cratonic peridotites including Kaapvaal, East Greenland, Siberia and Tanzania, are from Rudnick et al. (2004). (EPS 2.06 mb)

410_2009_461_MOESM7_ESM.eps

Supplementary Fig. 2 Chondrite-normalized REE patterns (a, b, c) and Primitive mantle-normalized spidegram (d, e, f) of clinopyroxenes from the Hannuoba and Hebi peridotites. Data from Supplementary Table 2. Data for Chondrite and Primitive mantle values are from Anders and Grevesse (1989) and McDonough and Sun (1995), respectively. (EPS 2860 kb)

410_2009_461_MOESM8_ESM.eps

Supplementary Fig. 3 Clinopyroxene total REE abundances (ppm) vs. clinopyroxene and spinel Cr# values for the Hannuoba peridotites. Data from Supplementary Tables 1 and 2. (EPS 1615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Zhang, H., Zhu, X. et al. Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism. Contrib Mineral Petrol 160, 1–14 (2010). https://doi.org/10.1007/s00410-009-0461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0461-y

Keywords

Navigation