Skip to main content
Log in

“Astonishing Successes” and “Bitter Disappointment”: The Specific Heat of Hydrogen in Quantum Theory

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The specific heat of hydrogen gas at low temperatures was first measured in 1912 by Arnold Eucken in Walther Nernst’s laboratory in Berlin, and provided one of the earliest experimental supports for the new quantum theory. Even earlier, Nernst had developed a quantum theory of rotating diatomic gas molecules that figured in the discussions at the first Solvay conference in late 1911. Between 1913 and 1925, Albert Einstein, Paul Ehrenfest, Max Planck, Fritz Reiche, and Erwin Schrödinger, among many others, attempted theoretical descriptions of the rotational specific heat of hydrogen, with only limited success. Quantum theory also was central to the study of molecular spectra, where initially it was more successful. Moreover, the two problems interacted in sometimes surprising ways. Not until 1927, following Werner Heisenberg’s discovery of the behavior of indistinguishable particles in modern quantum mechanics, did American theorist David Dennison find a successful theory of the specific heat of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, Edwin Plimpton. 1920–1923. The quantum theory. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 1, No. 5 [1920]; 2nd ed. 7, No. 39 [1923].)

  • Allen H. Stanley (1924) The band spectrum of hydrogen. Proceedings of the Royal Society of London A106: 69–82

    Google Scholar 

  • Assmus, Alexi. 1991. Molecular structure and the genesis of the American quantum physics community, 1916–1926. Ph.D. dissertation, Harvard University.

  • Assmus Alexi (1992a) The molecular tradition in early quantum theory. Historical Studies in the Physical and Biological Sciences 22: 209–231

    Google Scholar 

  • Assmus Alexi (1992b) The Americanization of molecular physics. Historical Studies in the Physical and Biological Sciences 23: 1–34

    Google Scholar 

  • Assmus, Alexi. 1999. Edwin C. Kemble. In National Academy of Sciences Biographical Memoirs, vol. 76, 178–197. Washington, D. C.: National Academies Press.

  • Bahr, Eva von. 1913. Über die ultrarote absorption der gase. Verhandlungen der Deutschen Physikalischen Gesellschaft 15: 710–730 and 1150–1158.

  • von Bahr Eva (1914) On the quantum theory and the rotation-energy of molecules. Philosophical Magazine 28: 71–83

    Google Scholar 

  • Barkan Diana Kormos (1999) Walther Nernst and the transition to modern physical science. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Barker E.F. (1923) Molecular spectra and half-quanta. The Astrophysical Journal 58: 201–207

    Google Scholar 

  • Bartholomé Ernst (1950) Arnold Eucken. Die Naturwissenschaften 37: 481–483

    Google Scholar 

  • Bederson Benjamin (2005) Fritz Reiche and the Emergency Committee in aid of displaced foreign scholars. Physics in Perspective 7: 453–472

    MathSciNet  Google Scholar 

  • Beller Mara (1999) Quantum dialogue: The making of a revolution. University of Chicago Press, Chicago

    MATH  Google Scholar 

  • Birge, Raymond T. 1926. Electronic bands. Chapter IV in Kemble et al. (1926).

  • Birge, Raymond T. 1966–1975?. History of the Physics Department, University of California, Berkeley. 5 vols. (unpublished).

  • Birtwistle George (1928) The new quantum mechanics. Cambridge University Press, Cambridge and New York

    MATH  Google Scholar 

  • Bjerrum, Niels. 1912. Über die ultraroten absorptionsspektren der gase. In Festschrift W. Nernst, 90–98. Halle: W. Knapp. Reprinted and translated in Bjerrum (1949, 34–40). Page references are to the translation.

  • Bjerrum Niels (1914) Über ultrarote Spektren II. Eine directe Messung der Grösse von Energiequanta. Verhandlungen der Deutschen Physikalischen Gesellschaft 16: 640–642

    Google Scholar 

  • Bjerrum Niels (1949) Selected papers. Einar Munksgaard, Copenhagen

    Google Scholar 

  • Bohr, Niels. 1916. On the application of the quantum theory to periodic systems. Scheduled for publication in Philosophical Magazine, April 1916. Published in Bohr (1972–1996, vol 2, 431–461). Page references are to the proof sheets in the latter.

  • Bohr, Niels. 1921. Abhandlungen über Atombau aus den Jahren 1913–1916. Braunschweig/Wiesbaden Vieweg.

  • Bohr, Niels. 1972–1996. Niels Bohr: Collected works. 13 vols, ed. L. Rosenfeld et al. Amsterdam: North Holland.

  • Boltzmann, Ludwig. 1884–1885. Über die Eigenschaften monozyklischer und anderer damit verwandter Systeme. Crelles Journal 98: 68–94. Reprinted in Boltzmann (1909, vol. 3, 122–152).

  • Boltzmann, Ludwig. 1896–1898. Vorlesungen über Gastheorie. 2 vols. Leipzig: Barth. Reprinted in Roman U. Sexl, ed. Gesamtausgabe, Band 1: Vorlesungen über Gastheorie. Braunschweig/Wiesbaden: Vieweg. English translation in Lectures on Gas Theory. Berkeley: University of California Press, 1964; reprinted New York: Dover Press, 1995.

  • Boltzmann, Ludwig. 1909. Wissenschaftliche Abhandlungen. 3 vols, ed. Fritz Hasenöhrl. Leipzig: Barth.

  • Bonhoeffer K.F., Harteck P. (1929) Experimente über Para- und Orthowasserstoff. Die Naturwissenschaften 17: 182

    Google Scholar 

  • Born, Max. 1925. Vorlesungen über Atommechanik. Vienna and New York: Springer. English translation in The Mechanics of the Atom (London: Bell, 1927).

  • Born Max (1978) My Life: Recollections of a Nobel Laureate. Scribner, New York

    Google Scholar 

  • Brand John C.D. (1995) Lines of light: the sources of dispersive spectroscopy 1800–1930. Gordon and Breach, New York

    Google Scholar 

  • Brinkworth J.H. (1925) On the measurement of the ratio of the specific heats using small volumes of gas. The ratios of the specific heats of air and hydrogen at atmospheric pressure and at temperatures between 20° C and –183°C. Proceedings of the Royal Society of London A107: 510–543

    Google Scholar 

  • Brinsmade James B., Kemble Edwin C. (1917) The occurrence of harmonics in the infra-red absorption spectra of diatomic gases. Proceedings of the National Academy of Sciences 3: 420–425

    Google Scholar 

  • Brush, Stephen G. 1976. The kind of motion we call heat. 2 vols. Amsterdam: North Holland.

  • Cahan David (1989) An institute for an empire: The Physkalisch-Technische Reichsanstalt, 1871–1918. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Carson, Cathryn. 1996. The peculiar notion of exchange forces: Origins in quantum mechanics, 1926-1928; The peculiar notion of exchange forces II: From nuclear forces to QED, 1929–1950. Studies in History and Philosophy of Modern Physics 27: 23–45 and 99–131.

  • Cassidy David C. (1979) Heisenberg’s first core model of the atom: The development of a professional style. Historical Studies in the Physical Sciences 10: 187–224

    Google Scholar 

  • Cassidy David C. (1992) Uncertainty: The life and science of Werner Heisenberg. Freeman, New York

    Google Scholar 

  • Cassidy David C. (2007) Oppenheimer’s first paper: Molecular band spectra and a professional style. Historical Studies in the Physical and Biological Sciences 37: 247–268

    Google Scholar 

  • Chayut Michael (1994) From Berlin to Jerusalem: Ladislaus [sic] Farkas and the founding of physical chemistry in Israel. Historical Studies in the Physical and Biological Sciences 24: 237–263

    Google Scholar 

  • Clusius Klaus, Hiller Kurt (1929) Die spezifischen Wärmen des Parawasserstoffes in festem, flüssigem und gasförmigem Zustande. Zeitschrift für Physikalische Chemie B, 4: 159–168

    Google Scholar 

  • Clusius K., Bartholomé E. (1934) Die Rotationswärme der Moleküle HD und D2 und der Kernspin des D-Atoms. Zeitschrift für Elektrochemie 40: 524–529

    Google Scholar 

  • Coffey Patrick (2006) Chemical free energies and the third law of thermodynamics. Historical Studies in the Physical and Biological Sciences 36: 365–395

    Google Scholar 

  • Colby W.F., Meyer Charles F. (1921) On the absorption spectrum of hydrogen chloride. The Astrophysical Journal 53: 300–309

    Google Scholar 

  • Colby W.F., Meyer C.F., Bronk D.W. (1923) An extension of the fundamental infrared absorption band of hydrogen chloride. The Astrophysical Journal 57: 7–19

    Google Scholar 

  • Colby W.F. (1923) Note on the formulation of absorption bands in the near infra-red. The Astrophysical Journal 58: 303–306

    Google Scholar 

  • Colby, Walter F. 1926. Infra-red absorption bands. Chapter III in Kemble et al. (1926).

  • Cornish R.E., Eastman E.D. (1928) The specific heat of hydrogen gas at low temperatures from the velocity of sound; and a precision method of measuring the frequency of an oscillating circuit. Journal of the American Chemical Society 50: 627–652

    Google Scholar 

  • Crane, H. Richard. 1980. David Mathias Dennison. In National Academy of Sciences Biographical Memoirs, vol. 52, 139–159. Washington, D.C.: National Academies Press.

  • Curtis W.E. (1925) The Fulcher hydrogen bands. Proceedings of the Royal Society of London A107: 570–587

    Google Scholar 

  • Czerny M. (1925) Messungen im Rotationsspektrum des HCl im langwelligen Ultrarot. Zeitschrift für Physik 34: 227–244

    Google Scholar 

  • Czerny M. (1927) Die Rotationsspektren des Halogenwasserstoffe. Zeitschrift für Physik 44: 235–255

    Google Scholar 

  • Darrigol Olivier (1991) Statistics and combinatorics in early quantum theory, II: Early symptoma of indistinguishability and holism. Historical Studies in the Physical and Biological Sciences 21: 237–298

    Google Scholar 

  • Darrigol Olivier (1992) From c-numbers to q-numbers. University of California Press, Berkeley

    Google Scholar 

  • Debye, Peter. 1914. Zustandsgleichung und Quantenhypothese mit einem Anhang über Wämeleitung. In Planck et al. (1914b, 17–60).

  • Deichmann Ute (1999) The expulsion of Jewish chemists and biochemists from academia in Nazi Germany. Perspectives on Science 7: 1–86

    Google Scholar 

  • Dennison David M. (1926) The rotation of molecules. Physical Review 28: 318–333

    Google Scholar 

  • Dennison David M. (1927a) Wave mechanics and the rotation of homopolar molecules. Nature 119: 316–317

    MATH  Google Scholar 

  • Dennison David M. (1927b) A note on the specific heat of the hydrogen molecule. Proceedings of the Royal Society of London A115: 483–486

    Google Scholar 

  • Dennison David M. (1974) Recollections of physics and physicists during the 1920’s. American Journal of Physics 42: 1051–1056

    Google Scholar 

  • Desalvo Agostino (1992) From the chemical constant to quantum statistics: A thermodynamic route to quantum mechanics. Physis 29: 465–537

    MathSciNet  Google Scholar 

  • Dieke G.H. (1925) Over de soortelijke warmte van woterstof. Physica 5: 412–419

    MATH  Google Scholar 

  • Dieke, G.H., and J.J. Hopfield. 1926a. Absorption spectrum of the hydrogen molecule. Nature 118: 592 (October 31, 1926).

  • Dieke G.H., Hopfield J.J. (1926b) Das Absorptionsspectrum des Wasserstoffs und die Analyse seines ultravioletten Bandenspektrums. Zeitschrift für Physik 40: 299–308

    Google Scholar 

  • Dieke G.H., Hopfield J.J. (1927) The structure of the ultra-violet spectrum of the hydrogen molecule. Physical Review 30: 400–417

    Google Scholar 

  • Dirac P.A.M. (1926) On the theory of quantum mechanics. Proceedings of the Royal Society of London A112: 661–677

    Google Scholar 

  • Dostrovsky, Siglia. 1970. Arnold Thomas Eucken. In Gillispie (1970–1980, vol 4, 413–414).

  • Duncan, Anthony, and Michel Janssen. 2007. On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle. Parts one and two. Archive for History of Exact Sciences 61: 553–624 and 625–671.

    Google Scholar 

  • Eckert, Michael. 2008. Max Planck’s later work on quantum theory. In Planck (2008, 643–652).

  • Eggert J. (1963) Klaus Clusius. Physikalische Blätter 19: 319

    Google Scholar 

  • Ehrenfest, P. 1913. Bemerkung betrifs der Spezifischen Wärme zweiatomiger Gase. Verhandlungen der Deutschen Physikalischen Gesellschaft 15: 451–457. Reprinted in Ehrenfest (1959, 333–339).

  • Ehrenfest, P., and R.C. Tolman. 1924. Weak Quantization. Physical Review 24: 287–295. Reprinted in Ehrenfest (1959, 498–506).

    Google Scholar 

  • Ehrenfest, Paul. 1959. Paul Ehrenfest: Collected scientific papers. ed. Martin J. Klein. Amsterdam: North Holland.

  • Einstein, Albert. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik 17: 549–560. Reprinted in Einstein (1987–2009, vol. 2, Doc. 16).

  • Einstein, Albert. 1906. Zur Theorie der Brownschen Bewegung. Annalen der Physik 19: 371–381. Reprinted in Einstein (1987–2009, vol. 2, Doc. 32).

  • Einstein, Albert. 1907. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik 22: 180–190. Reprinted in Einstein (1987–2009, vol. 2, Doc. 9).

  • Einstein, Albert. 1909a. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift 10: 185–193. Reprinted in Einstein (1987–2009, vol. 2, Doc. 56).

  • Einstein, Albert. 1909b. Über die Entwickelung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Verhandlungen der Deutschen Physikalischen Gesellschaft 7: 482–500. Reprinted in Einstein (1987–2009, vol. 2, Doc. 60).

  • Einstein, Albert, and Ludwig Hopf. 1910. Statistische Untersuchung der Bewegung eines Resonators in einem Strahlungsfeld. Annalen der Physik 33: 1105–1115. Reprinted in Einstein (1987–2009, vol. 3, Doc. 8).

  • Einstein, Albert. 1911. Zum gegenwärtigen Stande des Problems der spezifischen Wärme. In Eucken (1914, 330–352). Reprinted in Einstein (1987–2009, vol. 3, Doc. 26).

  • Einstein, Albert. 1913. Max Planck als Forscher. Die Naturwissenschaften 1: 1077–1079. Reprinted in Einstein (1987–2009, vol. 4, Doc. 23).

  • Einstein, Albert, and Otto Stern. 1913. Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Annalen der Physik 40: 551–560. Reprinted in Einstein (1987–2009, vol. 4, Doc. 11).

  • Einstein, Albert. 1942. The work and personality of Walther Nernst. Scientific Monthly 54: 195–196. Reprinted in Albert Einstein. 1956. Out of My Later Years, 233–235. Secaucus: Citadel.

  • Einstein, Albert. 1987–2009. The collected papers of Albert Einstein. 12 vols, ed. John Stachel et al. Princeton: Princeton University Press.

  • Epstein Paul (1916) Über die spezifische Wärme des Wasserstoffs. Verhandlungen der Deutschen Physikalischen Gesellschaft 18: 398–413

    Google Scholar 

  • Eucken Arnold (1909) Über die Bestimmung spezifischer Wärmen bei tiefen Temperaturen. Physikalische Zeitschrift 10: 586–589

    Google Scholar 

  • Eucken, Arnold. 1912. Die Molekularwärme des Wasserstoffs bei tiefen Temperaturen. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 141–151.

  • Eucken, Arnold, editor and translator. 1914. Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30 Ockober bis 3 November 1914). Halle: W. Knapp.

  • Eucken Arnold (1920a) Bericht über die Andwendung der Quantenhypothese auf Rotationsbewegung der Gasmoleküle. Jahrbuch der Radioaktivität und Elektronik 16: 361–411

    Google Scholar 

  • Eucken Arnold (1920b) Rotationsbewegung und absolute Dimensionen der Moleküle. Zeitschrift für Elektrochemie 26: 377–383

    Google Scholar 

  • Eucken, Arnold. 1926. Quantenprobleme der Wärmelehre. Zeitschrift für technische Physik 7: 180–187 and 216–223.

  • Eucken A. (1929) Die Nachweis einer Umwandlung der antisymmetrischen Wasserstoffmolecülart in die symmetrische. Die Naturwissenschaften 17: 182

    Google Scholar 

  • Eucken A., Hiller K. (1929) Der Nachweis einer Umwandlung des Orthowasserstoffes in Parawasserstoff durch Messung der spezifischen Wärme. Zeitschrift für Physikalische Chemie B, 4: 142–157

    Google Scholar 

  • Farkas Adalbert, Farkas Ladislas (1934) Experiments on heavy hydrogen. Part I. Proceedings of the Royal Society of London A144: 467–480

    Google Scholar 

  • Farkas A., Farkas L., Harteck P. (1934) Experiments on heavy hydrogen. II. The Ortho–para conversion. Proceedings of the Royal Society of London A144: 481–493

    Google Scholar 

  • Farkas Adalbert (1935) Orthohydrogen, parahydrogen, and heavy hydrogen. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Farkas A. (1989) Paul Harteck: The triumphant decade 1925–1934. Ambix 36: 91–102

    Google Scholar 

  • Fellows, Frederick Hugh. 1985. J. H. Van Vleck: The early life and work of a mathematical physicist. Ph.D. dissertation, University of Minnesota.

  • Fermi Enrico (1926) Zur Quantelung des idealen monatomigen Gases. Zeitschrift für Physik 36: 902–912

    Google Scholar 

  • Fokker A.D. (1914a) Über Brownsche Bewegung im Strahlungsfeld. Physikalische Zeitschrift 15: 96–98

    Google Scholar 

  • Fokker A.D. (1914b) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik 43: 810–820

    Google Scholar 

  • Foote Paul D., Mohler F.L. (1922) The origin of spectra. Chemical Catalog Company, New York

    Google Scholar 

  • Fowler, R.H. 1929–1936. Statistical Mechanics. Cambridge: Cambridge University Press; 2nd ed. 1936.

  • Fujisaki Chiyoko (1982) P. Drude’s theory of dispersion of light and atomic model. Historia Scientarum 22: 19–67

    Google Scholar 

  • Fujisaki Chiyoko (1983a) From Delandres to Kratzer—development of the understanding of the origin of infrared band spectra, I (1880–1913). Historia Scientarum 24: 53–75

    Google Scholar 

  • Fujisaki Chiyoko (1983b) From Delandres to Kratzer—development of the understanding of the origin of infrared band spectra, II (1913–1920). Historia Scientarum 25: 57–86

    Google Scholar 

  • Fulcher Gordon S. (1913) Spectra of low potential discharges in air and hydrogen. The Astrophysical Journal 37: 60–71

    Google Scholar 

  • Gavroglu Kostas, Simões Ana (1994) The Americans, the Germans, and the beginnings of quantum chemistry: The confluence of diverging traditions. Historical Studies in the Physical and Biological Sciences 25: 47–110

    Google Scholar 

  • Gearhart Clayton A. (1996) Specific heats and the equipartition law in introductory textbooks. American Journal of Physics 64: 995–1000

    Google Scholar 

  • Gearhart Clayton A. (2002) Planck, the quantum, and the historians. Physics in Perspective 4: 170–215

    MATH  MathSciNet  Google Scholar 

  • Giacomini F.A. (1925) The temperature dependence of the molecular heats of gases, especially ammonia, methane, and hydrogen, at low temperature. Philosophical Magazine 50: 146–156

    Google Scholar 

  • Giauque W.F., Johnston H.L. (1928) Symmetrical and antisymmetrical hydrogen and the third law of thermodynamics. Thermal equilibrium and the triple point. Journal of the American Chemical Society 50: 3221–3228

    Google Scholar 

  • Gibbs, Josiah Willard. 1902. Elementary principles in statistical mechanics. New York: Scribner. Reprinted (Woodbridge, CT: Oxbow Press, 1981).

  • Gillispie, Charles Coulston, editor. 1970–1980. Dictionary of scientific biography. vols.1–16. New York: Charles Scribner’s Sons.

  • Goldberg, Stanley, Stuewer, Roger H. (eds) (1988) The Michelson era in American science: 1870–1930. American Institute of Physics, New York

    Google Scholar 

  • Goldstein, Herbert. 1959. Classical mechanics. Reading: Addison-Wesley. 2nd ed. 1980; 3rd ed. 2002.

  • Harteck Paul (1960) Physical chemists in Berlin, 1919–1933. Journal of Chemical Education 37: 462–466

    Google Scholar 

  • Heisenberg, Werner. 1925. Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33: 879–893. English translation in B. L. van der Waarden, ed. Sources of Quantum Mechanics, 261–276. New York: Dover, 1967. Page references are to the translation.

  • Heisenberg Werner (1926a) Mehrkörperproblem und Resonanz in der Quantenmechanik. Zeitschrift für Physik 38: 411–426

    Google Scholar 

  • Heisenberg, Werner. 1926b. Über die Spektra von Atomsystemen mit zwei Elektronen. Zeitschrift für Physik 39: 499–518. English translation in W. R. Hindmarsh, ed. Atomic Spectra, 219–242. New York: Pergamon Press, 1967.

  • Heisenberg Werner (1927) Mehrkörperproblem und Resonanz in der Quantenmechanik, II. Zeitschrift für Physik 41: 239–267

    Google Scholar 

  • Hentschel, Klaus (eds) (1996) Physics and national socialism, an anthology of primary sources. Birkhäuser, Basel

    MATH  Google Scholar 

  • Herzberg Gerhard (1950) Molecular spectra and molecular structure I. Spectra of diatomic molecules. D. Van Nostrand, New York

    Google Scholar 

  • Herzberg, Gerhard. 1973. Spectroscopy and molecular structure. In Physics 50 Years Later, ed. Sanborn C. Brown, 101–162. Washington, DC: National Academy of Sciences.

  • Hettema, Hinne, translator and editor. 2000. Quantum chemistry: Classic scientific papers. Singapore: World Scientific.

  • Herzfeld Karl F. (1925) Kinetische Theorie der Wärme. Vieweg, Braunschweig

    MATH  Google Scholar 

  • Hiebert, Erwin N. 1980. Hermann Walther Nernst. In Gillispie (1970–1980, vol. 15, 432–453).

  • Hiebert, Erwin N. 1983. Walther Nernst and the Application of Physics to Chemistry. In Rutherford Aris et al., Springs of Scientific Creativity, 203–231. Minneapolis: University of Minnesota Press.

  • Holm E. (1913) Anwendung der neuren Planckschen Quantenhypothese zur Berechnung der rotatorischen Energie des zweiatomigen Gases. Annalen der Physik 42: 1311–1320

    Google Scholar 

  • Holm E.A. (1915) Berichtigung des Curie-Langevinschen Magnetisierungsgesetzes für die molekulare Weglänge. Annalen der Physik 47: 1–48

    Google Scholar 

  • Holmes, Frederic L., editor. 1990. Dictionary of scientific biography. vols. 17–18. New York: Charles Scribner’s Sons.

  • Holton, Gerald. 1988. On the hesitant rise of quantum physics research in the United States. In Thematic origins of scientific thought: Kepler to Einstein, Gerald Holton, On the hesitant 147–187. Cambridge: Harvard University Press. An earlier version is in Goldberg and Stuewer (1988, 177–205).

  • Hori Takeo (1927) Über die Analyse des Wasserstoffbandenspektrums in äußersten Ultraviolett. Zeitschrift für Physik 44: 834–854

    Google Scholar 

  • Houston William V. (1927) The fine structure of the helium arc spectrum. Proceedings of the National Academy of Sciences 13: 91–94

    Google Scholar 

  • Huang Kerson (2001) Introduction to statistical physics. CRC Press, New York

    MATH  Google Scholar 

  • Hund, Friedrich. 1926. Zur Deutung einiger Erscheinungen in den Molekelspecktren. Zeitschrift für Physik 36: 657–674. English translation in Hettema (2000, 199–213).

  • Hund F. (1927) Zur Deutung der Molekelspektren. II. Zeitschrift für Physik 42: 93–120

    Google Scholar 

  • Hutchisson E., Van Vleck J.H. (1925) Half quanta and the specific heat of hydrogen. Physical Review 25: 243–244

    Google Scholar 

  • Hutchisson Elmer (1926) On the quantum theory of the specific heat of hydrogen part II. Comparison of various theories with experiment. Physical Review 28: 1022–1029

    Google Scholar 

  • Imes E.S. (1919) Measurement in the near infrared absorption of some diatomic gases. The Astrophysical Journal 50: 251–276

    Google Scholar 

  • Jaenicke W. (1957) Karl-Friedrich Bonhoeffer. Physikalische Blätter 13: 369–370

    Google Scholar 

  • Jammer, Max. 1966–1989. The conceptual development of quantum mechanics. New York: McGraw-Hill. Second edition Los Angeles: Tomash and New York: American Institute of Physics (1989). Page references are to the first edition.

  • Janssen Michel (2002) COI Stories: Explanation and evidence in the history of science. Perspectives on Science 10: 457–522

    MathSciNet  Google Scholar 

  • Kelvin Lord (1901) Nineteenth century clouds over the dynamical theory of heat and light. Philosophical Magazine 2: 1–40

    Google Scholar 

  • Kemble Edwin C. (1916a) The distribution of angular velocities among diatomic gas molecules. Physical Review 8: 689–700

    Google Scholar 

  • Kemble Edwin C. (1916b) On the occurrence of harmonics in the infra-red absorption spectra of gases. Physical Review 8: 701–714

    Google Scholar 

  • Kemble, Edwin Crawford (1917). Studies in the application of the quantum hypothesis to the kinetic theory of gases and to the theory of their infra-red absorption bands. Ph.D. dissertation, Harvard University.

  • Kemble Edwin C. (1918) A new formula for the temperature variation of the specific heat of hydrogen. Physical Review 11: 156–158

    Google Scholar 

  • Kemble Edwin C. (1920) The Bohr theory and the approximate harmonics in the infra-red spectra of diatomic gases. Physical Review 15: 95–109

    Google Scholar 

  • Kemble E.C., Van Vleck J.H. (1923a) Theory of the temperature variation of the specific heat of hydrogen. Physical Review 21: 372

    Google Scholar 

  • Kemble E.C., Van Vleck J.H. (1923b) On the theory of the temperature variation of the specific heat of hydrogen. Physical Review 21: 653–661

    Google Scholar 

  • Kemble, Edwin C., Raymond T. Birge, Walter F. Colby, F. Wheeler Loomis, and Leigh Page. 1926. Molecular Spectra in Gases. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 11, No. 57.)

  • Klein Martin J. (1964) Einstein and the wave-particle duality. The Natural Philosopher 3: 1–49

    Google Scholar 

  • Klein Martin J. (1965) Einstein, specific heats, and the early quantum theory. Science 148: 173–180

    Google Scholar 

  • Klein, Martin J. 1970. Paul Ehrenfest, The making of a theoretical physicist, vol. 1. Amsterdam: North Holland.

  • Koertige, Noretta. ed. 2008. Dictionary of scientific biography. vols. 19–25. New York: Charles Scribner’s Sons.

  • Kox A.J. (2006) Confusion and clarification: Albert Einstein and Walter Nernst’s Heat Theorem, 1911–1916. Studies in History and Philosophy of Modern Physics 37: 101–114

    MathSciNet  Google Scholar 

  • Kramers H.A. (1923) Über die Quantelung rotierender Moleküle. Zeitschrift für Physik 13: 343–350

    Google Scholar 

  • Kramers H.A., Pauli W. Jr. (1923) Zur Theorie der Bandenspectren. Zeitschrift für Physik 13: 351–367

    Google Scholar 

  • Kratzer Adolf (1920) Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik 3: 289–307

    Google Scholar 

  • Kratzer, Adolf. 1922a. Störungen und Kombinationsprinzip in System der violetten Cyanbanden. Sitzungsbereichte, Bayerischen Akademie der Wissenschaften: 107–118.

  • Kratzer Adolf (1922b) Der heutige Stand der Theorie der Bandenspektren. Ergebnisse der Exakten Naturwissenschaften 1: 315–334

    Google Scholar 

  • Kratzer Adolf (1923a) Die Feinstruktur einer Klasse von Bandenspektren. Annalen der Physik 71: 72–103

    Google Scholar 

  • Kratzer Adolf (1923b) Kombinationsbeziehungen und Terme im Bandenspektrum des Heliums. Zeitschrift für Physik 16: 353–366

    Google Scholar 

  • Kronig, R. de L., and I.I. Rabi. 1927. The symmetrical top in the undulatory mechanics. Physical Review 29: 262–269

  • Kuhn Thomas S. (1978) Black-body theory and the quantum discontinuity, 1894-1912. Oxford University Press, New York

    Google Scholar 

  • Kutzelnigg, Werner. 1996. Friedrich Hund and chemistry. Angewandte Chemie (International Edition in English) 35: 572–586.

  • Lenz Wilhelm (1919) Zur Theorie der Bandenspektren. Verhandlungen der Deutschen Physikalischen Gesellschaft 21: 632–643

    Google Scholar 

  • Lessheim Hans (1926) Über den Elektronendrehimpuls rotierender Moleküle. Zeitschrift für Physik 35: 831–849

    Google Scholar 

  • Lewis, William C. McC. 1916–1924. A system of physical chemistry. 3 vols. vol. 3, Quantum Theory, first appeared as part of the 2nd ed, (1919); 3rd ed. 1924. London: Longmans, Green.

  • Lorentz H.A. (1910) Alte und neue Fragen der Physik. Physikalische Zeitschrift 11: 1234–1257

    Google Scholar 

  • Lyman Theodore (1906) The spectrum of hydrogen in the region of extremely short wavelength. The Astrophysical Journal 23: 181–210

    Google Scholar 

  • Lyman, Theodore. 1914–1928. The spectroscopy of the extreme ultra-violet. London: Longmans, Green. 2nd ed. 1928.

  • Lyman Theodore (1915) The extension of the spectrum beyond the Schumann region. Proceedings of the National Academy of Sciences 1: 368–371

    Google Scholar 

  • Lyman Theodore (1922) The spectroscopy of the extreme ultra-violet. Science 55: 161–166

    Google Scholar 

  • Lyman Theodore (1926) The reversal of the hydrogen series in the extreme ultra-violet. Science 64: 89–90

    Google Scholar 

  • Maxwell, James Clerk. 1875. On the dynamical evidence of the molecular constitution of bodies. Nature 11: 357–359 and 374–377. Reprinted in The Scientific Papers of James Clerk Maxwell, vol. 2, 418–438. 2 vols. Edited by W. D. Niven. Cambridge and New York: Cambridge University Press, 1890. Reprinted New York: Dover Press, 1952.

    Google Scholar 

  • Mayer Joseph Edward, Mayer Maria Goeppert (1940) Statistical mechanics. Wiley, New York

    MATH  Google Scholar 

  • Mecke R. (1924) Über Intensitätsanomalien bei Bandenspektra. Physikalische Zeitschrift 25: 597–599

    Google Scholar 

  • Mehra, Jagdish, and Helmut Rechenberg. 1982–2000. The historical development of quantum mechanics. 6 vols. Vienna: Springer.

  • McGucken William (1969) Nineteenth-century spectroscopy. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Mickens, Ronald E. 1998. Elmer S. Imes. In American National Biography, vol. 11, 636–637. Oxford: Oxford University Press.

  • Mickens, Ronald E. 1999. Elmer Samuel Imes. In J. C. Smith, editor, Notable Black American Men, 589–591. Detroit: Gale Research.

  • Milonni P.W. (1981) Quantum mechanics of the Einstein–Hopf model. American Journal of Physics 49: 177–184

    MathSciNet  Google Scholar 

  • Milonni P.W., Shih M.-L. (1991) Zero-point energy in early quantum theory. American Journal of Physics 59: 684–698

    Google Scholar 

  • Milonni Peter W. (1994) The quantum vacuum. Academic Press, New York

    Google Scholar 

  • Mulliken Robert S. (1931) The interpretation of band spectra, part IIc. Reviews of Modern Physics 3: 90–155

    Google Scholar 

  • Navarro Luis, Pérez Enric (2006) Paul Ehrenfest: The genesis of the adiabatic hypothesis, 1911–1914. Archive for History of Exact Sciences 60: 209–267

    MathSciNet  Google Scholar 

  • Needell, Allan A. 1980. Irreversibility and the failure of classical dynamics: Max Planck’s work on the quantum theory, 1900–1915. Ph.D. dissertation, Yale University.

  • Nernst, Walther. 1893–1926. Theoretische Chemie vom Standpunkte der Avogadroschen Regel und der Thermodynamik. Stuttgart: Ferdinand Enke, first through fifteenth editions.

  • Nernst, W. 1906a. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten Göttingen Gesellschaft: 1–40.

  • Nernst, W. 1906b. Über die Beziehungen zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 933–940.

  • Nernst Walther (1907) Experimental and theoretical applications of thermodynamics to chemistry. Yale University Press, New Haven

    Google Scholar 

  • Nernst, W. 1910. Untersuchungen über die spezifische Wärme bei tiefen Temperaturen. II. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 262–282.

  • Nernst W. (1911a) Der Energieinhalt fester Stoffe. Annalen der Physik 36: 395–439

    Google Scholar 

  • Nernst Walther (1911b) Zur Theorie der Spezifischen Wärme und über die Anwendung der Lehre von der Energiequanten auf physikalischen chemischen Fragen überhaupt. Zeitschrift für Electrochemie 17: 265–275

    Google Scholar 

  • Nernst Walther, Lindemann F.A. (1911) Spezifische Wärme und Quantentheorie. Zeitschrift für Electrochemie 17: 817–827

    Google Scholar 

  • Nernst Walther (1912) Der Energie Einhalt der Gase. Physikalische Zeitschrift 13: 1064–1068

    Google Scholar 

  • Nernst Walther (1914) Über die Anwendung des neuen Wärmesatzes auf Gase. Zeitschrift für Electrochemie 20: 357–360

    Google Scholar 

  • Nernst, Walther. 1918, 1924. Die theoretischen und experimentellen Grundlagen des neuren Wärmesatzes. Halle: W. Knapp. 2nd ed. 1924. English translation in Walther Nernst, The new heat theorem. New York: Dover, 1969.

  • Nielsen H.H. (1960) Harrison McAllister Randall: A half-century of infrared spectroscopy. Journal of the Optical Society of America 50: 1147

    Google Scholar 

  • Nye Mary Jo (1972) Molecular reality: A perspective on the scientific work of Jean Perrin. American Elsevier, New York

    Google Scholar 

  • Oesper Ralph E. (1950) Arnold Eucken. Journal of Chemical Education 27: 540–541

    Google Scholar 

  • Pais Abraham (1991) Niels Bohr’s Times. Oxford University Press, Oxford

    Google Scholar 

  • Partington J.R., Howe A.B. (1925) The ratio of the specific heats of hydrogen. Proceedings of the Royal Society of London A109: 286–291

    Google Scholar 

  • Partington J.R., Shilling W.G. (1924) The specific heats of gases. E. Benn, London

    Google Scholar 

  • Pérez Enric (2009) Ehrenfest’s adiabatic hypothesis and the old quantum theory, 1916–1918. Archive for History of Exact Sciences 63: 81–125

    MathSciNet  Google Scholar 

  • Perrin, Jean. 1923. Atoms. New York: Van Nostrand. Reprinted (Woodbridge, CT: Oxbow Press, 1990).

  • Pier Mathias (1909) Die spezifischen Wärmen von Argon, Wasserdampf, Stickstoff, Wasserstoff bei sehr hohen Temperaturen. Zeitschrift für Elektrochemie 15: 536–540

    Article  Google Scholar 

  • Planck, Max. 1906. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: Barth. Reprinted in Max Planck, The theory of heat radiation (New York: American Institute of Physics, 1988).

  • Planck, Max. 1914a. Die Gesetze der Wärmestrahlung und die Hypothese der elementaren Wirkungsquanten. In Eucken (1914, 76–94). Reprinted in Planck (1958, vol. II, 269–286).

  • Planck Max et al (1914b) Vorträge über die kinetische Theorie der Materie und der Electrizität. Leipzig, Teubner

    Google Scholar 

  • Planck, Max. 1915a. Über die Energieverteilung in einem System rotierender Dipole. In Elster-Geitel Festschrift, 313–317. Braunschwieg: Vieweg. Reprinted in Planck (1958, vol. II, 336–340).

  • Planck, Max. 1915b. Die Quantenhypothese für Molekeln mit mehreren Freiheitsgraden (Erste Mitteilung). Verhandlungen der Deutschen Physikalischen Gesellschaft 17: 407–418. Reprinted in Planck (1958, vol. II, 349–360). Page references are to Planck (1958).

  • Planck, Max. 1915c. Die Quantenhypothese für Molekeln mit mehreren Freiheitsgraden (Zweite Mitteilung). Verhandlungen der Deutschen Physikalischen Gesellschaft 17: 438–451. Reprinted in Planck (1958, vol. II, 362–375).

  • Planck, Max. 1916. Die physikalische Struktur des Phasenräumes. Annalen der Physik 50: 385–418. Reprinted in Planck (1958, vol. II, 386–419).

  • Planck, Max. 1917a. Über einen Satz der statischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 324–341. Reprinted in Planck (1958, vol. II, 435–452).

  • Planck, Max. 1917b. Zur Theorie des Rotationsspektrums 1. Mitt. and 2. Mitt. Annalen der Physik 52: 491–505 and 53: 241–256. Reprinted in Planck (1958, vol. II, 458–488).

  • Planck, Max. 1958. Physikalische Abhandlungen und Vorträge. 3 vols. Braunschwieg/Wiesbaden: Vieweg.

  • Planck, Max. 2008. Max Planck: annalen papers. ed. Dieter Hoffmann. Weinheim: Wiley-VCH.

  • Rademacher Hans, Reiche Fritz (1926) Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik II. Intensitätsfragen. Zeitschrift für Physik 41: 453–492

    Google Scholar 

  • Randall, H.M., and E.S. Imes. 1920. The fine-structure of the near infrared absorption of the gases HCl, HBr, and HF. Physical Review 15: 152–155.

    Google Scholar 

  • Randall H.M. (1923) Infra-red spectra. Proceedings. American Philosophical Society 62: 326–340

    Google Scholar 

  • Randall H.M. (1923) Report on the fine structure of near infrared absorption bands. Journal of the Optical Society of America 7: 45–57

    Google Scholar 

  • Randall H.M. (1954) Infrared spectroscopy at the University of Michigan. Journal of the Optical Society of America 44: 94–103

    Google Scholar 

  • Rayleigh Lord. (1892) On the interference bands of approximately homogeneous light: in a letter to Prof. A. Michelson. Philosophical Magazine 34: 407–411

    Google Scholar 

  • Reiche Fritz. (1917) Zur Quantentheorie des Paramagnetismus. Annalen der Physik 54: 401–436

    Google Scholar 

  • Reiche Fritz. (1919) Zur Quantentheorie der Rotationswärme des Wasserstoffs. Annalen der Physik 58: 657–694

    Google Scholar 

  • Reiche Fritz. (1920) Zur Theorie der Rotationsspektren. Zeitschrift für Physik 1: 283–293

    Google Scholar 

  • Reiche, Fritz. 1921. Die Quantentheorie. Berlin: Springer. English translation in Fritz Reiche, The quantum theory (New York: E. P. Dutton and Company, 1921). Page references are to the translation.

  • Reiche Fritz. (1926) Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik. Zeitschrift für Physik 39: 444–464

    Google Scholar 

  • Reif F. (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, New York

    Google Scholar 

  • Renn, Jürgen. 2005. Einstein’s invention of Brownian Motion. In Einstein’s Annalen Papers, ed. Jürgen Renn, 23–37. Weinheim: Wiley-VCH.

  • Richardson Owen W. (1934) Molecular hydrogen and its spectrum. Yale University Press, New Haven

    Google Scholar 

  • Rigden, John S. 1990. Dennison, David Mathias. In Holmes (1990, vol. 17, 220–222).

  • Robertson, Peter. 1979. The early years: The Niels Bohr Institute 1921–1930. Copenhagen: Akademiske Forlag.

  • Rotszajn Sophie. (1918) Die Anwendung der Planckschen Erweiterung der Quantenhypothese auf rotierende Gebilde mit zwei Freiheitsgraden in einem Richtungsfelde. Annalen der Physik 57: 81–123

    Google Scholar 

  • Ruark, Arthur Edward, and Harold Clayton Urey. 1930. Atoms, molecules and quanta. New York: McGraw-Hill.

  • Schäfer K. (1973). Ernst Bartholomé zum 65. Geburtstag. Berichte der Bunsengesellschaft für physikalische Chemie 77: 742–743.

    Google Scholar 

  • Scheel Karl, Wilhelm Heuse. (1912) Die Spezifische Wärme der Luft bei Zimmertemperature und bei tiefen Temperaturen. Annalen der Physik 37: 79–95

    Google Scholar 

  • Scheel Karl, Wilhelm Heuse. (1913) Die spezifische Wärme von Helium und einigen zwieatomigen Gasen. Annalen der Physik 40: 473–492

    Google Scholar 

  • Schleich K. (1964) Klaus Clusius. Helvetica Chimica Acta 47: 234–246

    Google Scholar 

  • Schrödinger, Erwin. 1917. Die Ergebnisse der neueren Forschung über Atom- und Molekularwärmen. Die Naturwissenschaften 34: 532–543 and 35: 561–567. Reprinted in Schrödinger (1984, vol. 1, 174–187).

  • Schrödinger, Erwin. 1919. Die Energieinhalt der Festkörper im Lichte der neueren Forschung. Physikalische Zeitschrift 20: 420–428; 450–455; 474–480; 497–503; 523–526. Reprinted in Schrödinger (1984, vol. 1, 277–307).

  • Schrödinger, Erwin. 1924. Über die Rotationswärme des Wasserstoffs. Zeitschrift für Physik 30: 341–349. Reprinted in Schrödinger (1984, vol. 1, 332–340).

  • Schrödinger, Erwin. 1925. Spezifische Wärme (theoretische Teil). In H. Geiger and Karl Scheel, editors, Handbuch der Physik, vol. X, 275–320. Berlin: Springer. Reprinted in Schrödinger (1984, vol. 1, 366–411).

  • Schrödinger, Erwin. 1926a. Quantisierung als Eigenwertproblem (Zweite Mitteilung). Annalen der Physik 79: 489–527. Reprinted in Schrödinger (1984, vol. 3, 98–136). English translation in Erwin Schrödinger, Collected Papers on Wave Mechanics, 13–40. London: Blackie, 1928. Page references are to the translation.

  • Schrödinger E. (1926) An undulatory theory of the mechanics of atoms and molecules. Physical Review 28: 1049–1070

    Google Scholar 

  • Schrödinger Erwin. (1984) Collected Papers/Gesammelte Abhandlungen 4 vols. Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  • Schwarzschild, Karl. 1916. Zur Quantenhypothese. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 548–568.

  • Shore Steven N. (2003) Macrocosmos/microcosmos: celestial mechanics and the old quantum theory. Historia Mathematica 30: 494–513

    MATH  MathSciNet  Google Scholar 

  • Slater John C. (1926) Alternating intensities in band lines. Nature 117: 555–556

    Google Scholar 

  • Small, Henry Gilbert. 1971. The helium atom in the old quantum theory. Ph.D. dissertation, University of Wisconsin.

  • Smekal Adolf. (1918) Zur sogenannten I. Planckschen Quantentheorie (Zur Quantentheorie des Paramagnetismus). Annalen der Physik 57: 376–400

    Google Scholar 

  • Smekal, Adolph. 1926. Allgemeine Grundlagen der Quantenstatistik und Quantentheorie. In Encyclopädie der Mathematischen Wissenschaften vol. 5, 3:2, 861–1214.

  • Sommerfeld, Arnold. 1922. Atombau und Spektrallinien (3rd ed.). Braunschwieg/Wiesbaden: Vieweg. English translation in Arnold Sommerfeld. 1923. Atomic structure and spectral lines. New York: E. P. Dutton and Company.

  • Sommerfeld Arnold. (1924) Atombau und Spektrallinien (4th eds). Vieweg, Braunschwieg/Wiesbaden

    Google Scholar 

  • Sommerfeld Arnold. (1950) Lectures on theoretical physics, vol I, Mechanics. Academic Press, New York

    Google Scholar 

  • Sopka Katherine Russell. (1988) Quantum physics in America. American Institute of Physics, Los Angeles, Tomash and New York

    Google Scholar 

  • Stuewer Roger H. (1986) The naming of the deuteron. American Journal of Physics 54: 206–218

    Google Scholar 

  • Symon Keith R. (1960) Mechanics. Addison-Wesley, New York

    Google Scholar 

  • Tabor D. (1991) Gases, liquids, and solids (3rd ed). Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Tolman Richard C. (1923) Rotational Specific Heat and Half Quantum Numbers. Physical Review 22: 470–478

    Google Scholar 

  • Tolman Richard C. (1927) Statistical mechanics with applications to physics and chemistry. American Chemical Society, New York

    MATH  Google Scholar 

  • Tousey R. (1962) The extreme ultraviolet—past and future. Applied Optics 1: 679–694

    Google Scholar 

  • Tomonaga Sin-Itiro. (1997) The story of spin. University of Chicago Press, Chicago

    Google Scholar 

  • Trautz Max, Konrad Hebbel. (1924) Die Messung der spezifischen Wärme C v von Gasen mittels der Differentialmethode. II. Mitteilung. Annalen der Physik 74: 285–324

    Google Scholar 

  • Uffink Jos. (2006) Insuperable difficulties: Einstein’s statistical road to molecular physics. Studies in History and Philosophy of Modern Physics 37: 36–70

    MathSciNet  Google Scholar 

  • Urey Harold C., Brickwedde F.G., Murphy G.M. (1932) A hydrogen isotope of mass 2. Physical Review 39: 164–165

    Google Scholar 

  • Urey H.C., Teal G.K. (1935) The hydrogen isotope of atomic weight two. Reviews of Modern Physics 7: 34–94

    Google Scholar 

  • Van Vleck J.H. (1924) The specific heat of an exact gyroscopic model of the hydrogen molecule. Physical Review 23: 308

    Google Scholar 

  • Van Vleck, J.H. 1926a. Quantum principles and line spectra. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 10, No. 54.)

  • Van Vleck J.H. (1926) On the quantum theory of the specific heat of hydrogen. Part I. Relation to the new mechanics, band spectra, and chemical constants. Physical Review 28: 980–1021

    Google Scholar 

  • Van Vleck J.H. (1926) Notes on the postulates of the matrix quantum dynamics. Proceedings of the National Academy of Sciences 12: 385–388

    MATH  Google Scholar 

  • Van Vleck J.H. (1929) The new quantum mechanics. Chemical Reviews 5: 467–507

    Google Scholar 

  • Van Vleck John. (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, New York

    MATH  Google Scholar 

  • Van Vleck J.H. (1964) American physics comes of age. Physics Today 17: 21–26

    Google Scholar 

  • Walker Mark. (1989) German national socialism and the quest for nuclear power. Cambridge University Press, New York

    Google Scholar 

  • Weyssenhoff Jan von. (1916) Die Anwendung der Quantentheorie auf rotierende Gebilde und die Theorie des Paramagnetismus. Annalen der Physik 51: 285–326

    Google Scholar 

  • Wennerholm Stefan. (2009) On the outskirts of physics: Eva von Bahr as an outsider within in early 20th century Swedish experimental physics. Centaurus 51: 12–36

    Google Scholar 

  • Werner Sven. (1926) Hydrogen bands in the ultra-violet Lyman region. Proceedings of the Royal Society of London A 113: 107–117

    Google Scholar 

  • Wigner, E., and E.E. Witmer. 1928. Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik. Zeitschrift für Physik 51: 859–886. English translation in Hettema (2000, 287–311).

  • Witmer Enos E. (1926a) Critical potentials and the heat of dissociation of hydrogen as determined from its ultra-violet band spectrum. Proceedings of the National Academy of Sciences 12: 238–244

    Google Scholar 

  • Witmer Enos E. (1926b) Critical potentials and the heat of dissociation of hydrogen as determined from its ultra-violet band spectrum. Physical Review 28: 1223–1241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton A. Gearhart.

Additional information

Communicated by R.H. Stuewer.

Dedicated to the memory of Martin J. Klein.

This paper was written in cooperation with the joint project in the history of quantum physics sponsored by the Max-Planck-Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gearhart, C.A. “Astonishing Successes” and “Bitter Disappointment”: The Specific Heat of Hydrogen in Quantum Theory. Arch. Hist. Exact Sci. 64, 113–202 (2010). https://doi.org/10.1007/s00407-009-0053-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-009-0053-2

Keywords

Navigation