Skip to main content

Advertisement

Log in

Epithelial to mesenchymal transition (EMT) seems to be regulated differently in endometriosis and the endometrium

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Epithelial–mesenchymal transition (EMT) endows cells with migratory and invasive properties, a prerequisite for the establishment of endometriotic lesions. However, the role EMT might play in the pathophysiology of endometriosis is still unknown. Therefore, we examined five recognized markers for EMT in endometrium and endometriosis: E-cadherin, N-cadherin, Twist, Snail and Slug.

Methods

Immunohistochemistry was used for peritoneal, ovarian and rectovaginal endometriotic lesions (n = 27) and endometrium (n = 13). Reverse transcription polymerase chain reaction was applied to tissue samples and primary cell cultures of endometriotic lesions (n = 9) and endometrium (n = 8).

Results

In endometriosis and endometrium E-cadherin, N-cadherin, Twist, Snail and Slug were expressed on protein and mRNA level. E-cadherin expression was strong in epithelial cells, but single E-cadherin-negative cells were frequently present in endometriosis. In endometriosis N-cadherin, Twist and Snail expression were upregulated in comparison with endometrium. The expression of E- and N-cadherin was inversely correlated, while that of N-cadherin and Twist was positively correlated.

Conclusion

This study strongly suggests that EMT may be regulated differently in endometriosis and the endometrium. Future research should further elucidate the regulation of EMT in the endometrium and endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldmann MB, Cramer DW (1990) The epidemiology of endometriosis. Prog Clin Biol Res 323:15–31

    Google Scholar 

  2. Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Obstet Gynecol 14:422–469

    Google Scholar 

  3. Konickx PR, Kennedy SH, Barlow DH (1998) Endometriotic disease: the role of peritoneal fluid. Hum Reprod Update 4(5):741–751

    Article  Google Scholar 

  4. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 154(1):8–20

    Article  CAS  PubMed  Google Scholar 

  5. Boyer B, Vallés AM, Edme N (2000) Induction and regulation of epithelial–mesenchymal transitions. Biochem Pharmacol 60(8):1091–1099

    Article  CAS  PubMed  Google Scholar 

  6. Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163

    Article  CAS  PubMed  Google Scholar 

  7. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645–3654

    Article  CAS  PubMed  Google Scholar 

  8. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  CAS  PubMed  Google Scholar 

  9. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    Article  CAS  PubMed  Google Scholar 

  10. van der Linden PJ, de Goeji AF, Dunselman GA, van der Linden EP, Ramaekers FC, Evers JL (1994) Expression of integrins and E-cadherin in cells from menstrual effluent, endometrium, peritoneal fluid, peritoneum and endometriosis. Fertil Steril 61(1):85–90

    PubMed  Google Scholar 

  11. Fujimoto J, Ichigo S, Hori M, Tamaya T (1996) Expression of E-cadherin, alpha- and beta-catenin mRNAs in ovarian endometriosis. Eur J Obstet Gynecol Reprod Biol 67(2):179–183

    Article  CAS  PubMed  Google Scholar 

  12. Scotti S, Regidor PA, Schindler AE, Winterhager E (2000) Reduced proliferation and cell adhesion in endometriosis. Mol Hum Reprod 6(7):610–617

    Article  CAS  PubMed  Google Scholar 

  13. Chen YI, Li HY, Huang CH et al (2010) Oestrogen-induced epithelial–mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J Pathol 222:261–270

    Article  CAS  PubMed  Google Scholar 

  14. Beliard A, Donnez J, Nisolle M, Foidart JM (1997) Localization of laminin, fibronectin, E-cadherin, and integrins in endometrium and endometriosis. Fertil Steril 67(2):266–272

    Article  CAS  PubMed  Google Scholar 

  15. Poncelet C, Leblanc M, Walker-Combouze F et al (2002) Expression of cadherins and CD44 isoforms in human endometrium and peritoneal endometriosis. Acta Obstet Gynceol Scand 81(3):195–203

    Article  Google Scholar 

  16. Ueda M, Yamashita Y, Tekhara M, Terai Y, Kumagai K, Ueki K, Kanda K, Hung YC, Ueki M (2002) Gene expression of adhesion molecules and matrix metalloproteinases in endometriosis. Gynecol Endocrinol 16(5):391–402

    Article  CAS  PubMed  Google Scholar 

  17. Shaco-Levy R, Charabi S, Beharroch D, Piura B, Sion-Vardy N (2008) Matrix metalloproteinases 2 and 9, E-cadherin and beta-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium. Eur J Obstet Gynecol Reprod Biol 139(2):226–232

    Article  CAS  PubMed  Google Scholar 

  18. Darai E, Leblanc M, Walker-Combrouze F, Bringuier AF, Madelenat P, Scoazec JY (1998) Expression of cadherins and CD44 isoforms in ovarian endometrial cysts. Hum Reprod 13(5):1346–1352

    Article  CAS  PubMed  Google Scholar 

  19. Zeitvogel A, Baumann R, Starzinski-Powitz A (2001) Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am J Pathol 159(5):1839–1852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Matsuzaki S, Darcha C (2012) Epithelial to mesenchymal transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum Reprod 27(3):712–721

    Article  CAS  PubMed  Google Scholar 

  21. American Society for Reproductive Medicine. Revised American Society for Reproductive Medicine classification of endometriosis:1996 (1997) Fertil Steril 67(5):817–822

    Google Scholar 

  22. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nature Rev Cancer 119:1438–1449

    Google Scholar 

  23. Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A (1995) Invasiveness of endometriotic cells in vitro. Lancet 346(8988):1463–1464

    Article  CAS  PubMed  Google Scholar 

  24. Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A (1997) Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin. Am J Pathol 150(2):461–467

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147(3):631–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rosivatz E, Becker KF, Kremmer E, Schott C, Blechschmidt K, Höfler H, Sarbia M (2004) Neoexpression of N-cadherin in E-cadherin positive colon cancers. Int J Cancer 111(5):711–719

    Article  CAS  PubMed  Google Scholar 

  27. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Protillo F, Nieto MA (2000) The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  CAS  PubMed  Google Scholar 

  28. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  CAS  PubMed  Google Scholar 

  29. Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 down-regulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  30. Aybar MJ, Nieto MA, Mayor R (2003) Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130:483–494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. C. Gericke for statistical advice and Aidan Bartley for editorial advice. This research was funded by the Charité Universitätsmedizin without the involvement of other organizations.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bartley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartley, J., Jülicher, A., Hotz, B. et al. Epithelial to mesenchymal transition (EMT) seems to be regulated differently in endometriosis and the endometrium. Arch Gynecol Obstet 289, 871–881 (2014). https://doi.org/10.1007/s00404-013-3040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-013-3040-4

Keywords

Navigation