Skip to main content
Log in

DNA methylation-based reclassification of olfactory neuroblastoma

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

A Correction to this article was published on 09 August 2018

This article has been updated

Abstract

Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1–4, 8–10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 09 August 2018

    In the original publication, the second name of the twentieth author was incorrect. It should read as ‘Miguel Sáinz-Jaspeado’. The original publication of the article has been updated to reflect the change. This correction was authored by Ulrich Schüller on behalf of all authors of the original publication.

References

  1. Abe M, Ohira M, Kaneda A, Yagi Y, Yamamoto S, Kitano Y et al (2005) CpG island methylator phenotype is a strong determinant of poor prognosis in neuroblastomas. Cancer Res 65:828–834

    PubMed  CAS  Google Scholar 

  2. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. https://doi.org/10.1038/nature09534

    Article  PubMed  CAS  Google Scholar 

  3. Abedalthagafi MS, Merrill PH, Bi WL, Jones RT, Listewnik ML, Ramkissoon SH et al (2014) Angiomatous meningiomas have a distinct genetic profile with multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5:10596–10606. https://doi.org/10.18632/oncotarget.2517

    Article  PubMed  PubMed Central  Google Scholar 

  4. Argani P, Perez-Ordonez B, Xiao H, Caruana SM, Huvos AG, Ladanyi M (1998) Olfactory neuroblastoma is not related to the Ewing family of tumors: absence of EWS/FLI1 gene fusion and MIC2 expression. Am J Surg Pathol 22:391–398

    Article  PubMed  CAS  Google Scholar 

  5. Bockmuhl U, You X, Pacyna-Gengelbach M, Arps H, Draf W, Petersen I (2004) CGH pattern of esthesioneuroblastoma and their metastases. Brain Pathol 14:158–163

    Article  PubMed  Google Scholar 

  6. Bridge JA, Bowen JM, Smith RB (2010) The small round blue cell tumors of the sinonasal area. Head Neck Pathol 4:84–93. https://doi.org/10.1007/s12105-009-0158-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Carney ME, O’Reilly RC, Sholevar B, Buiakova OI, Lowry LD, Keane WM et al (1995) Expression of the human Achaete-scute 1 gene in olfactory neuroblastoma (esthesioneuroblastoma). J Neurooncol 26:35–43

    Article  PubMed  CAS  Google Scholar 

  9. Cha S, Lee J, Shin JY, Kim JY, Sim SH, Keam B et al (2016) Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis. BMC Cancer 16:170. https://doi.org/10.1186/s12885-016-2209-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cha S, Lee S-H, Kim J-I, Shin J-Y (2014) Abstract 4191: Whole exome sequencing of a case of olfactory neuroblastoma. Cancer Res 74:4191. https://doi.org/10.1158/1538-7445.am2014-4191

    Article  Google Scholar 

  11. Cohen ZR, Marmor E, Fuller GN, DeMonte F (2002) Misdiagnosis of olfactory neuroblastoma. Neurosurg Focus 12:e3

    Article  PubMed  Google Scholar 

  12. Cordes B, Williams MD, Tirado Y, Bell D, Rosenthal DI, Al-Dhahri SF et al (2009) Molecular and phenotypic analysis of poorly differentiated sinonasal neoplasms: an integrated approach for early diagnosis and classification. Hum Pathol 40:283–292. https://doi.org/10.1016/j.humpath.2008.07.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dogan S, Chute DJ, Xu B, Ptashkin RN, Chandramohan R, Casanova-Murphy J et al (2017) Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol 242:400–408. https://doi.org/10.1002/path.4915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K et al (2015) Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet 24:2125–2137. https://doi.org/10.1093/hmg/ddu733

    Article  PubMed  CAS  Google Scholar 

  15. Engel NW, Neumann JE, Ahlfeld J, Wefers AK, Merk DJ, Ohli J et al (2016) Canonical Wnt signaling drives tumor-like lesions from Sox2-positive precursors of the murine olfactory epithelium. PLoS ONE 11:e0166690. https://doi.org/10.1371/journal.pone.0166690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159. https://doi.org/10.1056/NEJMra072067

    Article  PubMed  CAS  Google Scholar 

  17. Faragalla H, Weinreb I (2009) Olfactory neuroblastoma: a review and update. Adv Anat Pathol 16:322–331. https://doi.org/10.1097/PAP.0b013e3181b544cf

    Article  PubMed  CAS  Google Scholar 

  18. Ferreira HJ, Heyn H, Vizoso M, Moutinho C, Vidal E, Gomez A et al (2016) DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia. Oncogene 35:3079–3082. https://doi.org/10.1038/onc.2015.359

    Article  PubMed  CAS  Google Scholar 

  19. Gay LM, Kim S, Fedorchak K, Kundranda M, Odia Y, Nangia C et al (2017) Comprehensive genomic profiling of esthesioneuroblastoma reveals additional treatment options. Oncologist. https://doi.org/10.1634/theoncologist.2016-0287

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guled M, Myllykangas S, Frierson HF Jr, Mills SE, Knuutila S, Stelow EB (2008) Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol 21:770–778. https://doi.org/10.1038/modpathol.2008.57

    Article  PubMed  CAS  Google Scholar 

  21. Hafezi S, Seethala RR, Stelow EB, Mills SE, Leong IT, MacDuff E et al (2011) Ewing’s family of tumors of the sinonasal tract and maxillary bone. Head Neck Pathol 5:8–16. https://doi.org/10.1007/s12105-010-0227-x

    Article  PubMed  Google Scholar 

  22. Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R et al (2013) Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol 125:913–916. https://doi.org/10.1007/s00401-013-1126-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hughes LA, Melotte V, de Schrijver J, de Maat M, Smit VT, Bovee JV et al (2013) The CpG island methylator phenotype: what’s in a name? Cancer Res 73:5858–5868. https://doi.org/10.1158/0008-5472.can-12-4306

    Article  PubMed  CAS  Google Scholar 

  24. Hyams V (1988) Tumors of the upper respiratory tract and ear. In: Hyams V, Batsakis J, Michaelis L (eds) Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington, DC, pp 240–248

    Google Scholar 

  25. Iezzoni JC, Mills SE (2005) “Undifferentiated” small round cell tumors of the sinonasal tract: differential diagnosis update. Am J Clin Pathol 124(Suppl):S110–S121

    PubMed  Google Scholar 

  26. Jo VY, Chau NG, Hornick JL, Krane JF, Sholl LM (2017) Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol 30:650–659. https://doi.org/10.1038/modpathol.2016.239

    Article  PubMed  CAS  Google Scholar 

  27. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V et al (2016) Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29:379–393. https://doi.org/10.1016/j.ccell.2016.02.001

    Article  PubMed  CAS  Google Scholar 

  28. Kumar S, Perlman E, Pack S, Davis M, Zhang H, Meltzer P et al (1999) Absence of EWS/FLI1 fusion in olfactory neuroblastomas indicates these tumors do not belong to the Ewing’s sarcoma family. Hum Pathol 30:1356–1360

    Article  PubMed  CAS  Google Scholar 

  29. Lazo de la Vega L, McHugh JB, Cani AK, Kunder K, Walocko FM, Liu CJ et al (2017) Comprehensive molecular profiling of olfactory neuroblastoma identifies potentially targetable FGFR3 amplifications. Mol Cancer Res. https://doi.org/10.1158/1541-7786.mcr-17-0135

    Article  PubMed  Google Scholar 

  30. López-Hernández A, Vivanco B, Franchi A, Bloemena E, Cabal VN, Potes S et al (2018) Genetic profiling of poorly differentiated sinonasal tumours. Sci Rep 8:3998. https://doi.org/10.1038/s41598-018-21690-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  32. Meyer C, Hamersley ER, Manosalva RE, Torske K, McIntyre N, Mitchell A (2017) Olfactory neuroblastoma with divergent differentiation: an unusual histologic finding in a rare tumor. Head Neck Pathol. https://doi.org/10.1007/s12105-017-0781-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mills SE (2002) Neuroectodermal neoplasms of the head and neck with emphasis on neuroendocrine carcinomas. Mod Pathol 15:264–278. https://doi.org/10.1038/modpathol.3880522

    Article  PubMed  Google Scholar 

  34. Mills SE, Fechner RE (1989) “Undifferentiated” neoplasms of the sinonasal region: differential diagnosis based on clinical, light microscopic, immunohistochemical, and ultrastructural features. Semin Diagn Pathol 6:316–328

    PubMed  CAS  Google Scholar 

  35. Mitchell EH, Diaz A, Yilmaz T, Roberts D, Levine N, DeMonte F et al (2012) Multimodality treatment for sinonasal neuroendocrine carcinoma. Head Neck 34:1372–1376. https://doi.org/10.1002/hed.21940

    Article  PubMed  Google Scholar 

  36. Montone KT (2015) The differential diagnosis of sinonasal/nasopharyngeal neuroendocrine/neuroectodermally derived tumors. Arch Pathol Lab Med 139:1498–1507. https://doi.org/10.5858/arpa.2014-0383-RA

    Article  PubMed  Google Scholar 

  37. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ow TJ, Bell D, Kupferman ME, Demonte F, Hanna EY (2013) Esthesioneuroblastoma. Neurosurg Clin N Am 24:51–65. https://doi.org/10.1016/j.nec.2012.08.005

    Article  PubMed  Google Scholar 

  39. Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V, Kratochwil F et al (2015) Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell 27:728–743. https://doi.org/10.1016/j.ccell.2015.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol J Comput Mol Cell Biol 4:311–323. https://doi.org/10.1089/cmb.1997.4.311

    Article  CAS  Google Scholar 

  41. Rettig EM, D’Souza G (2015) Epidemiology of head and neck cancer. Surg Oncol Clin N Am 24:379–396. https://doi.org/10.1016/j.soc.2015.03.001

    Article  PubMed  Google Scholar 

  42. Riazimand SH, Brieger J, Jacob R, Welkoborsky HJ, Mann WJ (2002) Analysis of cytogenetic aberrations in esthesioneuroblastomas by comparative genomic hybridization. Cancer Genet Cytogenet 136:53–57

    Article  PubMed  CAS  Google Scholar 

  43. Soldatova L, Campbell RG, Carrau RL, Prevedello DM, Wakely P Jr, Otto BA et al (2016) Sinonasal carcinomas with neuroendocrine features: histopathological differentiation and treatment outcomes. J Neurol Surg Part B Skull Base 77:456–465. https://doi.org/10.1055/s-0036-1582432

    Article  Google Scholar 

  44. Sorensen PH, Wu JK, Berean KW, Lim JF, Donn W, Frierson HF et al (1996) Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA 93:1038–1043

    Article  PubMed  CAS  Google Scholar 

  45. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. https://doi.org/10.1016/j.ccr.2012.08.024

    Article  PubMed  CAS  Google Scholar 

  47. Su SY, Bell D, Hanna EY (2014) Esthesioneuroblastoma, neuroendocrine carcinoma, and sinonasal undifferentiated carcinoma: differentiation in diagnosis and treatment. Int Arch Otorhinolaryngol 18:S149–S156. https://doi.org/10.1055/s-0034-1390014

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sugita Y, Kusano K, Tokunaga O, Mineta T, Abe M, Harada H et al (2006) Olfactory neuroepithelioma: an immunohistochemical and ultrastructural study. Neuropathology 26:400–408

    Article  PubMed  Google Scholar 

  49. Taxy JB, Bharani NK, Mills SE, Frierson HF Jr, Gould VE (1986) The spectrum of olfactory neural tumors. A light-microscopic immunohistochemical and ultrastructural analysis. Am J Surg Pathol 10:687–695

    Article  PubMed  CAS  Google Scholar 

  50. Thompson LD (2009) Olfactory neuroblastoma. Head Neck Pathol 3:252–259. https://doi.org/10.1007/s12105-009-0125-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thompson LDR, Seethala RR, Müller S (2012) Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head Neck Pathol 6:75–100. https://doi.org/10.1007/s12105-012-0336-9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Topcagic J, Feldman R, Ghazalpour A, Swensen J, Gatalica Z, Vranic S (2018) Comprehensive molecular profiling of advanced/metastatic olfactory neuroblastomas. PLoS ONE 13:e0191244. https://doi.org/10.1371/journal.pone.0191244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-PJ (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci 96:8681–8686. https://doi.org/10.1073/pnas.96.15.8681

    Article  PubMed  CAS  Google Scholar 

  54. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483. https://doi.org/10.1038/nature10866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. van der Maaten L, Hinton G (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  56. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P et al (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2:82–93. https://doi.org/10.1158/2159-8290.CD-11-0184

    Article  PubMed  CAS  Google Scholar 

  57. Weinreb I, Perez-Ordoñez B (2007) Non-small cell neuroendocrine carcinoma of the sinonasal tract and nasopharynx. Report of 2 cases and review of the literature. Head Neck Pathol 1:21–26. https://doi.org/10.1007/s12105-007-0004-7

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weiss GJ, Liang WS, Izatt T, Arora S, Cherni I, Raju RN et al (2012) Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma. PLoS ONE 7:e37029. https://doi.org/10.1371/journal.pone.0037029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wenig BM (2009) Undifferentiated malignant neoplasms of the sinonasal tract. Arch Pathol Lab Med 133:699–712. https://doi.org/10.1043/1543-2165-133.5.699

    Article  PubMed  Google Scholar 

  60. Wenig BM, Dulguerov P, Kapadia SB, Prasad ML, Fanburg-Smith JC, Thompson LDR (2005) Chapter 1: Tumours of the nasal cavity and paranasal sinuses. neuroectodermal tumors. Olfactory neuroblastoma. In: Barnes L, Eveson J, Reichart P, Sidransky D (eds) Pathology & genetics of head and neck tumours, vol 9, 3rd edn. IARC Press, Lyon, pp 66–70

    Google Scholar 

  61. Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH et al (2012) LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 40:11189–11201. https://doi.org/10.1093/nar/gks918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are much obliged to the staff of the Center for Cancer Genome Discovery (CCGD) at the Dana-Farber Cancer Institute (Boston, US) for DNA sequencing and especially thank Paul van Hummelen and Aaron Thorner for assistance with interpretation of findings. We thank the Microarray unit of the Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ) for providing excellent DNA methylation services. We thank the DKFZ-Heidelberg Center for Personalized Oncology (DKFZ-HIPO) for technical support and funding through HIPO_036. In other parts, this work was supported by an Illumina Medical Research Grant. This work was further supported by the Deutsche Krebshilfe (Grant no. 111630) and the Fördergemeinschaft Kinderkrebs-Zentrum Hamburg e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schüller.

Ethics declarations

Conflict of interest

Andreas von Deimling, David Jones, and David Capper share inventorship of a “DNA-methylation-based method for classifying tumor species of the brain”. A patent has been applied for this method (EP 3067432 A1). All terms are being managed by the German Cancer Research Center in accordance with its conflict of interest policies. G. Reifenberger has received research grants from Roche and Merck Serono, and honoraria for lectures or advisory boards from Amgen and Celldex. The other authors declare no conflicts of interest.

Additional information

The original version of this article has been updated: the second name of the twentieth author was incorrect. It should read as ‘Miguel Sáinz-Jaspeado’.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure

 1. Analysis of possible sub-clusters within “Core ONB”. A. Unsupervised hierarchical cluster analysis of DNA methylation data from “Core ONB” group samples (n = 42) of the initial methylation cluster analysis revealed further subdivision of the “Core ONB” DNA methylation group into two putative clusters: “Core ONB A” (n = 24) and “Core ONB B” (n = 18). B. The methylation subgroups “Core ONB A” and “Core ONB B” were compared on the level of histomorphology (H&E staining; B-C) and for expression patterns of selected immunohistochemical markers S100 (E–F), chromogranin A (H-I) and cytokeratin (K-L). The images illustrate representative staining results for each marker in both groups. Scale bar is 100 µm (only visualized in B). Bar graphs display comparisons of distributions of values for variables “Hyams grade” (D) as well as “S100” (G), “chromogranin A” (J) and “cytokeratin” (M) between tumor groups. The distributions of staining patterns between “Core ONB A” and “Core ONB B” tumors did not differ significantly for any variable tested (D, G, J and M). (PDF 1587 kb)

Supplementary Figure

 2. Comparative copy number variation (CNV) profiling of DNA methylation subgroups “Core ONB A” and “Core ONB B”. A. CNV profiles of the n = 42 “Core ONB” tumor samples are displayed according to the clustering order of Supplementary Figure 1 with highlighted subdivision into putative methylation subgroups “Core ONB A” (n = 24) and “Core ONB B” (n = 18). B. The comparison of cumulated CNV profiles between “Core ONB A” and “Core ONB B” showed identical complex cytogenetic aberrations with recurrent losses of chromosomes 1, 2, 3, 4, 8, 9, 10, and 12 in both groups, further justifying their merge to an “Core ONB” DNA methylation group. (PDF 492 kb)

Supplementary Figure

 3. Assessment of overall CpG methylation and CpG island methylation levels. A. The distribution of mean beta-values for all CpG probes of the methylation array was displayed as box plots for the sinonasal tumor groups “Core ONB”, Sinonasal IDH2 carcinoma”, “Sinonasal tumors, high meth.”, Other sinonasal tumors” and two additional brain tumor groups with established CIMP status (IDH-mutated astrocytoma and oligodendroglioma) to allow for comparison of “overall CpG methylation” between tumor groups. “Sinonasal IDH2 carcinoma” and “Sinonasal tumors, high meth.” demonstrated relatively high overall CpG methylation. B. The same analysis for CpG probes of the methylation array mapped to CpG islands revealed similar high levels of CpG island methylation between CIMP reference brain tumor groups and “Sinonasal IDH2 carcinoma”, prompting the assumption of CIMP status for this group in accordance with detected recurrent IDH2 mutations. C. Density plot analysis of the distribution of beta-values (“methylation ratio”) of all probes mapped to CpG islands for individual tumor samples confirmed relative hypermethylation of CpG islands for tumor samples of the “Sinonasal IDH2 carcinoma” methylation group in comparison to “Core ONB” and “Other sinonasal tumors”. An individual case from the “Sinonasal tumors, high methylation” group showed similar pronounced CpG island methylation, but no IDH1/2-mutation. (PDF 439 kb)

Supplementary Figure

 4. Baseline characteristics and survival analysis of tumor groups. A. Baseline characteristics of tumor groups: The clinical attributes “Median age” and “Sex” were operationalized and compared by Kruskal–Wallis and Dunn’s post testing for “Median age” and by Chi-square testing for “Sex” between tumor groups. “Median age” was significantly different between “Core ONB” and “Sinonasal tumors, high methylation”. B. Kaplan–Meier survival analysis for tumor groups: A meaningful calculation of overall survival (OS) and group comparison was not possible due to limited clinical follow-up data. (PDF 134 kb)

Supplementary Table

 1. Overview of the institutionally diagnosed (histopathologically defined) olfactory neuroblastoma cohort. (XLSX 13 kb)

Supplementary Table

 2. List of genes included in the OncoPanel version 3 exome sequencing panel. (XLSX 22 kb)

Supplementary Table

 3. List of likely somatic non-synonymous variants with possible pathogenic and biological impact in “Core ONB” and “Sinonasal tumors with IDH2 mutation”. (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capper, D., Engel, N.W., Stichel, D. et al. DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathol 136, 255–271 (2018). https://doi.org/10.1007/s00401-018-1854-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1854-7

Keywords

Navigation