Skip to main content
Log in

Surface modification of poly(vinyl alcohol) fibers to control the fiber-matrix interaction in composites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polymeric fibers with varied acid/base behavior and wettability were prepared to control fiber-matrix interactions in fiber-reinforced composites. Water-insoluble high-performance poly(vinyl alcohol) fibers were equipped with different surface functionalities on a molecular level by chemical bonding of aldehydes and adsorption of acidic and alkaline polyelectrolytes. The fibers were characterized by surface-sensitive methods, such as X-ray photoelectron spectroscopy, zeta potential, and contact angle measurements. The modification resulted in stable thin nonpolar layers or polar acidic, alkaline, and amphoteric surface functionalities on the fiber surface, with advancing contact angles of deionized water between 30° and 90°. Fiber-matrix interactions were probed by pullout tests of single fibers embedded in a cementitious matrix and subsequent morphological analysis of the fibers. Polar surface functionalities caused a strong fiber-matrix adhesion while nonpolar, hydrophobic surface layers decreased the adhesion dramatically. The surface charge and acid/base behavior of the fibers had no significant influence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. detected by wide-angle X-ray scattering (unpublished results of the authors)

References

  1. Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Mäder E, Jacobasch HJ, Grundke K, Gietzelt T (1996) Influence of an optimized interphase on the properties of polypropylene/glass fibre composites. Composites Part A 27:907–912. https://doi.org/10.1016/1359-835X(96)00044-9

    Article  Google Scholar 

  3. Kuttner C, Hanisch A, Schmalz H, Eder M, Schlaad H, Burgert I, Fery A (2013) Influence of the polymeric interphase design on the interfacial properties of (fiber-reinforced) composites. ACS Appl Mater Interfaces 5:2469–2478. https://doi.org/10.1021/am302694h

    Article  CAS  PubMed  Google Scholar 

  4. Lee LL (1991) Fundamentals of adhesion. Plenum Press, New York

    Book  Google Scholar 

  5. Moulay S (2015) Poly(vinyl alcohol) functionalizations and applications. Polymer-Plast Technol Eng 54:1289–1319. https://doi.org/10.1080/03602559.2015.1021487

    Article  CAS  Google Scholar 

  6. Nakamura N, Suzuki K (1996) Study on ketalization reaction of poly(vinyl alcohol) by ketones. VIII. Kinetic study on acetalization and ketalization reactions of poly(vinyl alcohol). J Polym Sci Pol Chem 34:3319–3328. https://doi.org/10.1002/(SICI)1099-0518(19961130)34:16%3C3319::AID-POLA8%3E3.0.CO;2-O

    Article  CAS  Google Scholar 

  7. Chirowodza H, Sanderson RD (2010) Surface modification of poly(vinyl alcohol) fibers. Macromol Mater 295:1009–1016. https://doi.org/10.1002/mame.201000185

    Article  CAS  Google Scholar 

  8. Nakajima A, Ishida S, Sakurada I (1957). Chem High Polymers (Tokyo) 14:259

    CAS  Google Scholar 

  9. Sakurada I (1985) Polyvinyl alcohol fibers. International fiber science and technology series 6. Marcel Dekker, New York, Basel

    Google Scholar 

  10. Mahanta N, Valiyaveettil S (2011) Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 3:4625–4631. https://doi.org/10.1039/c1nr10739a

    Article  CAS  PubMed  Google Scholar 

  11. Marstokk O, Roots J (1999) Synthesis and characterization of hydrophobically modified poly(vinyl alcohol). Polym Bull 42:527–533. https://doi.org/10.1007/s002890050498

    Article  CAS  Google Scholar 

  12. Suk HJ, Lee DH, Ka JW, Kim J, Kwon TW, Park DK, Yi MH, Ahn T (2012) Modified polyvinyl alcohol layer with hydrophobic surface for the passivation of Pentacene thin-film transistor. J Nanosci Nanotechnol 12:3214–3218. https://doi.org/10.1166/jnn.2012.5643

    Article  CAS  PubMed  Google Scholar 

  13. Wågberg L, Forsberg S, Johansson A, Juntti P (2002) Engineering of fibre surface properties by application of the polyelectrolyte multilayer concept: part I: modification of paper strength. J Pulp Pap Sci 28:222–228

    Google Scholar 

  14. Bratskaya S, Schwarz S, Petzold G, Liebert T, Heinze T (2006) Cationic starches of high degree of functionalization: 12. Modification of cellulose fibers toward high filler technology in papermaking. Ind Eng Chem Res 45:7374–7379. https://doi.org/10.1163/15685610232039614810.1021/ie060135z

    Article  CAS  Google Scholar 

  15. Chen W, McCarthy TJ (1997) Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules 30:78–86. https://doi.org/10.1021/ma961096d

    Article  CAS  Google Scholar 

  16. Nygard P, Grundke K, Mäder E, Bellmann C (2002) Wetting kinetics and adhesion strength between polypropylene melt and glass fibre: influence of chemical reactivity and fibre roughness. J Adhes Sci Technol 16:1781–1808. https://doi.org/10.1163/156856102320396148

    Article  CAS  Google Scholar 

  17. Bellmann C, Klinger C, Opfermann A, Böhme F, Adler HJ (2002) Evaluation of surface modification by electrokinetic measurements. Prog Org Coat 44:93–98. https://doi.org/10.1016/S0300-9440(01)00248-X

    Article  CAS  Google Scholar 

  18. Sauer BB, Carney TE (1990) Dynamic contact angle measurements on glass fibers: influence of fiber diameter on hysteresis and contact line pinning. Langmuir 6:1002–1007. https://doi.org/10.1021/la00095a020

    Article  CAS  Google Scholar 

  19. Li VC (2003) On engineered cementitious composites (ECC): A review of the material and its applications. J Adv Concr Technol 1:215–230. https://doi.org/10.3151/jact.1.215

    Article  Google Scholar 

  20. Mechtcherine (2013) Novel cement-based composites for the strengthening and repair of concrete structures. Constr Build Mater 41:365–373. https://doi.org/10.1016/j.conbuildmat.2012.11.117

    Article  Google Scholar 

  21. Li VC, Leung KY (1992) Steady-state and multiple cracking of short random fiber composites. J Eng Mech-ASCE 118:2246–2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)

    Article  Google Scholar 

  22. Li VC, Wang S, Wu C (2001) Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater J 98:483–492. https://doi.org/10.14359/10851

    Article  CAS  Google Scholar 

  23. Li VC, Wu C, Wang S, Ogawa A, Saito T (2002) Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Mater J 99:463–472. https://doi.org/10.14359/12325

    Article  CAS  Google Scholar 

  24. Fahad AM, Mingxue W, Jianyong C, Huapeng Z (2019) Study on PVA fiber surface modification for strain-hardening cementitious composites (PVA-SHCC). Constr Building Mat 197:107–116. https://doi.org/10.1016/j.conbuildmat.2018.11.072

    Article  CAS  Google Scholar 

  25. Ding C, Guo L, Chen B, Xu Y, Cao Y, Fei C (2019) Micromechanics theory guidelines and method exploration for surface treatment of PVA fibers used in high-ductility cementitious composites. Constr Building Mat 196:154–165. https://doi.org/10.1016/j.conbuildmat.2018.11.118

    Article  CAS  Google Scholar 

  26. Felekoğlu B, Tosun K, Baradan B (2009) Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cem Concr Res 39:1023–1032. https://doi.org/10.1016/j.cemconres.2009.07.007

    Article  CAS  Google Scholar 

  27. Curosu I, Mechtcherine V, Millon O (2016) Effect of fiber properties and matrix composition on the tensile behavior of strain-hardening cement-based composites (SHCCs) subject to impact loading. Cem Concr Res 82:23–35. https://doi.org/10.1016/j.cemconres.2015.12.008

    Article  CAS  Google Scholar 

  28. Curosu I, Liebscher M, Mechtcherine V, Bellmann C, Michel S (2017) Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers. Cem Concr Res 98:71–81. https://doi.org/10.1016/j.cemconres.2017.04.004

    Article  CAS  Google Scholar 

  29. Kuraray Co. Ltd. (2018) Kuralon K II high tenacity type fibers. http://www.kuraray.co.jp/kii/english/. Accessed 6 July 2018

  30. Tougaard S (1997) Universality classes of inelastic electron scattering cross-sections. Surf Interface Anal 25:137–154. https://doi.org/10.1002/(SICI)1096-9918(199703)25:3%3C137::AID-SIA230%3E3.0.CO;2-L

    Article  CAS  Google Scholar 

  31. Bellmann C, Caspari A, Albrecht V, Loan Doan TT, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloids Surf A Physicochem Eng Asp 267:19–23. https://doi.org/10.1016/j.colsurfa.2005.06.033

    Article  CAS  Google Scholar 

  32. Grundke K (2008) Characterization of polymer surfaces by wetting and electrokinetic measurements - contact angle, interfacial tension, zeta potential. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin, Heidelberg, pp 103–138 http://www.springer.com/chemistry/polymer/book/978-3-540-73864-0

    Chapter  Google Scholar 

  33. Scheffler C, Zhandarov S, Wölfel E, Mäder E (2018) Interphases in cementitious matrix: effect of fibers, sizings and loading rates. In: Mechtcherine V, Slowik V, Kabele P (eds) Strain-hardening cement-based composites. SHCC 2017. RILEM Bookseries, vol 15. Springer, Dordrecht, pp 275–283. https://doi.org/10.1007/978-94-024-1194-2_32

    Chapter  Google Scholar 

  34. Scheffler C, Zhandarov S, Jenschke W, Mäder E (2013) Poly(vinyl alcohol) Fiber reinforced concrete: investigation of strain rate dependent interphase behavior with single fiber pullout test under quasi-static and high rate loading. J Adhes Sci Technol 27:385–402. https://doi.org/10.1080/01694243.2012.705543

    Article  CAS  Google Scholar 

  35. Schwarz S, Buchhammer HM, Lunkwitz K, Jacobasch HJ (1998) Polyelectrolyte adsorption on charged surfaces: study by elektrokinetic measurements. Coll Surf A 140:377–348. https://doi.org/10.1016/S0927-7757(97)00294-X

    Article  CAS  Google Scholar 

  36. Fowkes FM (1985) Interface Acid-Base/charge-transfer properties. In: Andrade JD (ed) Surface and interfacial aspects of biomedical polymers. Springer, Boston, MA, pp 337–372. https://doi.org/10.1007/978-1-4684-8610-0_9

    Chapter  Google Scholar 

  37. Jun P, Mechtcherine V (2010) Behaviour of strain-hardening cement-based composites (SHCC) under monotonic and cyclic tensile loading, part 1 – experimental investigations. Cem Concr Compos 32:801–809. https://doi.org/10.1016/j.cemconcomp.2010.07.019

    Article  CAS  Google Scholar 

  38. Rivas BL, Pereira E, Cid R, Geckeler KE (2005) Polyelectrolyte-assisted removal of metal ions with ultrafiltration. J Appl Polym Sci 95:1091–1099. https://doi.org/10.1002/app.21424

    Article  CAS  Google Scholar 

  39. Drechsler A, Frenzel R, Caspari A, Michel S, Holzschuh M, Synytska A, Curosu I, Liebscher M, Mechtcherine V (2019) Surface modification of polymeric fibers to control the interactions with cement-based matrices in fiber-reinforced composites. Key Eng Mater 809:225–230. https://doi.org/10.4028/www.scientific.net/KEM.809.225

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Cornelia Bellmann for the coordination of the first project period, for her ideas and contributions to fruitful discussions, Mrs. Martina Priebs for fiber modification and zeta potential measurements, Mr. Erjon Muja for performing the single-fiber pullout tests, and Kuraray Europe GmbH for providing the PVA fibers.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant numbers BE 2601/4-1, ME 2938/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Drechsler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drechsler, A., Frenzel, R., Caspari, A. et al. Surface modification of poly(vinyl alcohol) fibers to control the fiber-matrix interaction in composites. Colloid Polym Sci 297, 1079–1093 (2019). https://doi.org/10.1007/s00396-019-04528-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04528-z

Keywords

Navigation