Skip to main content

Advertisement

Log in

High field magnetic resonance imaging of rodents in cardiovascular research

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 August 2016

Abstract

Transgenic and gene knockout rodent models are primordial to study pathophysiological processes in cardiovascular research. Over time, cardiac MRI has become a gold standard for in vivo evaluation of such models. Technical advances have led to the development of magnets with increasingly high field strength, allowing specific investigation of cardiac anatomy, global and regional function, viability, perfusion or vascular parameters. The aim of this report is to provide a review of the various sequences and techniques available to image mice on 7–11.7 T magnets and relevant to the clinical setting in humans. Specific technical aspects due to the rise of the magnetic field are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Jacoby et al. [70]

Fig. 7

Reproduced with permission from Flögel et al. [51]

Fig. 8

Reproduced with permission from Büscher et al. [31]

Similar content being viewed by others

Abbreviations

ASL:

Arterial spin labeling

CEST:

Chemical exchange saturation transfer

CS:

Compressed sensing

CT:

Computed tomography

DENSE:

Displacement encoding with stimulated echoes

FLASH:

Fast low angle shot

FPP:

First pass perfusion

IR:

Inversion recovery

LGE:

Late gadolinium enhancement

MBF:

Myocardial blood flow

MEMRI:

Manganese-enhance magnetic resonance imaging

MRA:

Magnetic resonance angiography

MRS:

Magnetic resonance spectroscopy

MRSI:

Magnetic resonance spectroscopic imaging

PET:

Positron emission tomography

PC:

Phase contrast

RF:

Radiofrequency

SNR:

Signal-to-noise ratio

SPIONs:

Superparamagnetic iron oxide nanoparticles

TOF:

Time of flight

HF:

High field

Venc:

Velocity encoding

References

  1. Abdurrachim D, Ciapaite J, Wessels B, Nabben M, Luiken JJ, Nicolay K, Prompers JJ (2014) Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochim Biophys Acta 1842:1525–1537. doi:10.1016/j.bbalip.2014.07.016

    Article  PubMed  CAS  Google Scholar 

  2. Abeykoon S, Sargent M, Wansapura JP (2012) Quantitative myocardial perfusion in mice based on the signal intensity of flow sensitized CMR. J Cardiovasc Magn Reson 14:73. doi:10.1186/1532-429X-14-73

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aguor EN, Arslan F, van de Kolk CW, Nederhoff MG, Doevendans PA, van Echteld CJ, Pasterkamp G, Strijkers GJ (2012) Quantitative T2* assessment of acute and chronic myocardial ischemia/reperfusion injury in mice. MAGMA 25:369–379. doi:10.1007/s10334-012-0304-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akki A, Gupta A, Weiss RG (2013) Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol Heart Circ Physiol 304:H633–H648. doi:10.1152/ajpheart.00771.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252. doi:10.1006/jmre.1998.1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alsaid H, Sabbah M, Bendahmane Z, Fokapu O, Felblinger J, Desbleds-Mansard C, Corot C, Briguet A, Cremillieux Y, Canet-Soulas E (2007) High-resolution contrast-enhanced MRI of atherosclerosis with digital cardiac and respiratory gating in mice. Magn Reson Med 58:1157–1163. doi:10.1002/mrm.21308

    Article  PubMed  Google Scholar 

  7. Amundsen BH, Ericsson M, Seland JG, Pavlin T, Ellingsen O, Brekken C (2011) A comparison of retrospectively self-gated magnetic resonance imaging and high-frequency echocardiography for characterization of left ventricular function in mice. Lab Anim 45:31–37. doi:10.1258/la.2010.010094

    Article  CAS  PubMed  Google Scholar 

  8. Andrews M, Giger ML, Roman BB (2015) Manganese-enhanced MRI detection of impaired calcium regulation in a mouse model of cardiac hypertrophy. NMR Biomed 28:255–263. doi:10.1002/nbm.3249

    Article  CAS  PubMed  Google Scholar 

  9. Antkowiak P, Janiczek R, Gibberman L, Xu C, Kramer C, Meyer C, French B, Epstein F (2010) Quantitative first-pass perfusion MRI of the mouse heart. J Cardiovasc Magn Reson 12:M10

    Article  Google Scholar 

  10. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163. doi:10.1073/pnas.1733835100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845. doi:10.1148/radiology.171.3.2717762

    Article  CAS  PubMed  Google Scholar 

  12. Azam S, Desjardins CL, Schluchter M, Liner A, Stelzer JE, Yu X, Hoit BD (2012) Comparison of velocity vector imaging echocardiography with magnetic resonance imaging in mouse models of cardiomyopathy. Circ Cardiovasc Imaging 5:776–781. doi:10.1161/CIRCIMAGING.111.972406

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bakermans AJ, Abdurrachim D, Geraedts TR, Houten SM, Nicolay K, Prompers JJ (2015) In vivo proton T1 relaxation times of mouse myocardial metabolites at 9.4 T. Magn Reson Med 73:2069–2074. doi:10.1002/mrm.25340

    Article  CAS  PubMed  Google Scholar 

  14. Bakermans AJ, Abdurrachim D, Moonen RP, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K (2015) Small animal cardiovascular MR imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc 88–89:1–47. doi:10.1016/j.pnmrs.2015.03.001

    Article  PubMed  CAS  Google Scholar 

  15. Bakermans AJ, Abdurrachim D, van Nierop BJ, Koeman A, van der Kroon I, Baartscheer A, Schumacher CA, Strijkers GJ, Houten SM, Zuurbier CJ, Nicolay K, Prompers JJ (2015) In vivo mouse myocardial P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR Biomed. doi:10.1002/nbm.3371

    PubMed  Google Scholar 

  16. Bakermans AJ, Dodd MS, Nicolay K, Prompers JJ, Tyler DJ, Houten SM (2013) Myocardial energy shortage and unmet anaplerotic needs in the fasted long-chain acyl-CoA dehydrogenase knockout mouse. Cardiovasc Res 100:441–449. doi:10.1093/cvr/cvt212

    Article  CAS  PubMed  Google Scholar 

  17. Bakermans AJ, Geraedts TR, van Weeghel M, Denis S, Joao Ferraz M, Aerts JM, Aten J, Nicolay K, Houten SM, Prompers JJ (2011) Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function. Circ Cardiovasc Imaging 4:558–565. doi:10.1161/CIRCIMAGING.111.963751

    Article  PubMed  Google Scholar 

  18. Bakermans AJ, van Weeghel M, Denis S, Nicolay K, Prompers JJ, Houten SM (2013) Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J Inherit Metab Dis 36:973–981. doi:10.1007/s10545-013-9604-4

    Article  CAS  PubMed  Google Scholar 

  19. Baltes C, Bosshard S, Mueggler T, Ratering D, Rudin M (2011) Increased blood oxygen level-dependent (BOLD) sensitivity in the mouse somatosensory cortex during electrical forepaw stimulation using a cryogenic radiofrequency probe. NMR Biomed 24:439–446. doi:10.1002/nbm.1613

    PubMed  Google Scholar 

  20. Bauer WR, Hiller KH, Galuppo P, Neubauer S, Kopke J, Haase A, Waller C, Ertl G (2001) Fast high-resolution magnetic resonance imaging demonstrates fractality of myocardial perfusion in microscopic dimensions. Circ Res 88:340–346

    Article  CAS  PubMed  Google Scholar 

  21. Bauer WR, Roder F, Hiller KH, Han H, Frohlich S, Rommel E, Haase A, Ertl G (1997) The effect of perfusion on T1 after slice-selective spin inversion in the isolated cardioplegic rat heart: measurement of a lower bound of intracapillary-extravascular water proton exchange rate. Magn Reson Med 38:917–923

    Article  CAS  PubMed  Google Scholar 

  22. Beyers RJ, Smith RS, Xu Y, Piras BA, Salerno M, Berr SS, Meyer CH, Kramer CM, French BA, Epstein FH (2012) T(2)-weighted MRI of post-infarct myocardial edema in mice. Magn Reson Med 67:201–209. doi:10.1002/mrm.22975

    Article  PubMed  Google Scholar 

  23. Blain A, Greally E, Laval S, Blamire A, Straub V, MacGowan GA (2013) Beta-blockers, left and right ventricular function, and in vivo calcium influx in muscular dystrophy cardiomyopathy. PLoS One 8:e57260. doi:10.1371/journal.pone.0057260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bohl S, Lygate CA, Barnes H, Medway D, Stork LA, Schulz-Menger J, Neubauer S, Schneider JE (2009) Advanced methods for quantification of infarct size in mice using three-dimensional high-field late gadolinium enhancement MRI. Am J Physiol Heart Circ Physiol 296:H1200–H1208. doi:10.1152/ajpheart.01294.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonner F, Jacoby C, Temme S, Borg N, Ding Z, Schrader J, Flogel U (2014) Multifunctional MR monitoring of the healing process after myocardial infarction. Basic Res Cardiol 109:430. doi:10.1007/s00395-014-0430-0

    Article  PubMed  CAS  Google Scholar 

  26. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 9:1641–1653. doi:10.2147/IJN.S48979

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bulluck H, Maestrini V, Rosmini S, Abdel-Gadir A, Treibel TA, Castelletti S, Bucciarelli-Ducci C, Manisty C, Moon JC (2015) Myocardial T1 mapping. Circ J 79:487–494. doi:10.1253/circj.CJ-15-0054

    Article  PubMed  Google Scholar 

  28. Bun SS, Kober F, Jacquier A, Espinosa L, Kalifa J, Bonzi MF, Kopp F, Lalevee N, Zaffran S, Deharo JC, Cozzone PJ, Bernard M (2012) Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T. Invest Radiol 47:319–323. doi:10.1097/RLI.0b013e318243e062

    Article  PubMed  Google Scholar 

  29. Bunck AC, Engelen MA, Schnackenburg B, Furkert J, Bremer C, Heindel W, Stypmann J, Maintz D (2009) Feasibility of functional cardiac MR imaging in mice using a clinical 3 Tesla whole body scanner. Invest Radiol 44:749–756. doi:10.1097/RLI.0b013e3181b2c135

    Article  PubMed  Google Scholar 

  30. Buonincontri G, Hu C-H, Sawiak S, Krieg T (2014) P516Diastolic dysfunction in diabetic mice revealed by MRI. Cardiovasc Res 103 (Suppl 1):S94–S95

    Article  Google Scholar 

  31. Buscher K, Judenhofer MS, Kuhlmann MT, Hermann S, Wehrl HF, Schafers KP, Schafers M, Pichler BJ, Stegger L (2010) Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med 51:1277–1284. doi:10.2967/jnumed.110.076448

    Article  PubMed  Google Scholar 

  32. Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF (2013) Cardiac arterial spin labeling using segmented ECG-gated look-locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 69:238–247. doi:10.1002/mrm.24243

    Article  PubMed  Google Scholar 

  33. Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237. doi:10.1002/jmri.10454

    Article  PubMed  Google Scholar 

  34. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224

    CAS  PubMed  Google Scholar 

  35. Chapon C, Herlihy AH, Bhakoo KK (2008) Assessment of myocardial infarction in mice by late gadolinium enhancement MR imaging using an inversion recovery pulse sequence at 9.4 T. J Cardiovasc Magn Reson 10:6. doi:10.1186/1532-429X-10-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Jia ZY, Ma ZL, Wang YY, Teng GJ (2011) In vivo serial MR imaging of magnetically labeled endothelial progenitor cells homing to the endothelium injured artery in mice. PLoS One 6:e20790. doi:10.1371/journal.pone.0020790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chuang JS, Zemljic-Harpf A, Ross RS, Frank LR, McCulloch AD, Omens JH (2010) Determination of three-dimensional ventricular strain distributions in gene-targeted mice using tagged MRI. Magn Reson Med 64:1281–1288. doi:10.1002/mrm.22547

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cochet H, Montaudon M, Laurent F, Calmettes G, Franconi JM, Miraux S, Thiaudiere E, Parzy E (2010) In vivo MR angiography and velocity measurement in mice coronary arteries at 9.4 T: assessment of coronary flow velocity reserve. Radiology 254:441–448. doi:10.1148/radiol.2542090735

    Article  PubMed  Google Scholar 

  39. Coolen BF, Geelen T, Paulis LE, Nauerth A, Nicolay K, Strijkers GJ (2011) Three-dimensional T1 mapping of the mouse heart using variable flip angle steady-state MR imaging. NMR Biomed 24:154–162. doi:10.1002/nbm.1566

    Article  PubMed  Google Scholar 

  40. Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ (2010) Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med 64:1658–1663. doi:10.1002/mrm.22588

    Article  PubMed  Google Scholar 

  41. Coolen BF, Simonis FF, Geelen T, Moonen RP, Arslan F, Paulis LE, Nicolay K, Strijkers GJ (2014) Quantitative T2 mapping of the mouse heart by segmented MLEV phase-cycled T2 preparation. Magn Reson Med 72:409–417. doi:10.1002/mrm.24952

    Article  PubMed  Google Scholar 

  42. Cui W, Jang A, Zhang P, Thompson B, Townsend D, Metzger JM, Zhang J (2015) Early detection of myocardial bioenergetic deficits: a 9.4 Tesla complete non invasive 31P MR spectroscopy study in mice with muscular dystrophy. PLoS One 10:e0135000. doi:10.1371/journal.pone.0135000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dall’Armellina E, Jung BA, Lygate CA, Neubauer S, Markl M, Schneider JE (2012) Improved method for quantification of regional cardiac function in mice using phase-contrast MRI. Magn Reson Med 67:541–551. doi:10.1002/mrm.23022

    Article  PubMed  Google Scholar 

  44. de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL (2010) Small-animal molecular imaging methods. J Nucl Med 51(Suppl 1):18S–32S. doi:10.2967/jnumed.109.068148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dodd MS, Ball V, Bray R, Ashrafian H, Watkins H, Clarke K, Tyler DJ (2013) In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy. J Cardiovasc Magn Reson 15:19. doi:10.1186/1532-429X-15-19

    Article  PubMed  PubMed Central  Google Scholar 

  46. Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325. doi:10.1002/nbm.1149

    Article  PubMed  Google Scholar 

  47. Drelicharz L, Wozniak M, Skorka T, Tyrankiewicz U, Heinze-Paluchowska S, Jablonska M, Gebska A, Chlopicki S (2009) Application of magnetic resonance imaging in vivo for the assessment of the progression of systolic and diastolic dysfunction in a mouse model of dilated cardiomyopathy. Kardiol Pol 67:386–395

    PubMed  Google Scholar 

  48. Epstein FH (2007) MR in mouse models of cardiac disease. NMR Biomed 20:238–255. doi:10.1002/nbm.1152

    Article  PubMed  Google Scholar 

  49. Ferreira VM, Piechnik SK, Robson MD, Neubauer S, Karamitsos TD (2014) Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J Thorac Imaging 29:147–154. doi:10.1097/RTI.0000000000000077

    Article  PubMed  PubMed Central  Google Scholar 

  50. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148. doi:10.1161/CIRCULATIONAHA.107.737890

    Article  PubMed  PubMed Central  Google Scholar 

  51. Flogel U, Jacoby C, Godecke A, Schrader J (2007) In vivo 2D mapping of impaired murine cardiac energetics in NO-induced heart failure. Magn Reson Med 57:50–58. doi:10.1002/mrm.21101

    Article  PubMed  CAS  Google Scholar 

  52. Gilliam AD, Epstein FH, Acton ST (2009) Cardiac motion recovery via active trajectory field models. IEEE Trans Inf Technol Biomed 13:226–235. doi:10.1109/TITB.2008.2009221

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gilson WD, Kraitchman DL (2007) Cardiac magnetic resonance imaging in small rodents using clinical 1.5 T and 3.0 T scanners. Methods 43:35–45. doi:10.1016/j.ymeth.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gnyawali SC, Roy S, McCoy M, Biswas S, Sen CK (2009) Remodeling of the ischemia-reperfused murine heart: 11.7-T cardiac magnetic resonance imaging of contrast-enhanced infarct patches and transmurality. Antioxid Redox Signal 11:1829–1839. doi:10.1089/ARS.2009.2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gutjahr FT, Kampf T, Winter P, Meyer CB, Williams T, Jakob PM, Bauer WR, Ziener CH, Helluy X (2014) Quantification of perfusion in murine myocardium: a retrospectively triggered T-based ASL method using model-based reconstruction. Magn Reson Med. doi:10.1002/mrm.25526

    Google Scholar 

  56. Hankiewicz JH, Banke NH, Farjah M, Lewandowski ED (2010) Early impairment of transmural principal strains in the left ventricular wall after short-term, high-fat feeding of mice predisposed to cardiac steatosis. Circ Cardiovasc Imaging 3:710–717. doi:10.1161/CIRCIMAGING.110.959098

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hankiewicz JH, Goldspink PH, Buttrick PM, Lewandowski ED (2008) Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 294:H330–H336. doi:10.1152/ajpheart.01109.2007

    Article  CAS  PubMed  Google Scholar 

  58. Hankiewicz JH, Lewandowski ED (2007) Improved cardiac tagging resolution at ultra-high magnetic field elucidates transmural differences in principal strain in the mouse heart and reduced stretch in dilated cardiomyopathy. J Cardiovasc Magn Reson 9:883–890. doi:10.1080/10976640701693683

    Article  PubMed  Google Scholar 

  59. Heijman E, Aben JP, Penners C, Niessen P, Guillaume R, van Eys G, Nicolay K, Strijkers GJ (2008) Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images. J Magn Reson Imaging 27:86–93. doi:10.1002/jmri.21236

    Article  PubMed  Google Scholar 

  60. Herold V, Morchel P, Faber C, Rommel E, Haase A, Jakob PM (2006) In vivo quantitative three-dimensional motion mapping of the murine myocardium with PC-MRI at 17.6 T. Magn Reson Med 55:1058–1064. doi:10.1002/mrm.20866

    Article  PubMed  Google Scholar 

  61. Herold V, Parczyk M, Morchel P, Ziener CH, Klug G, Bauer WR, Rommel E, Jakob PM (2009) In vivo measurement of local aortic pulse-wave velocity in mice with MR microscopy at 17.6 Tesla. Magn Reson Med 61:1293–1299. doi:10.1002/mrm.21957

    Article  PubMed  Google Scholar 

  62. Herrmann KH, Schmidt S, Kretz A, Haenold R, Krumbein I, Metzler M, Gaser C, Witte OW, Reichenbach JR (2012) Possibilities and limitations for high resolution small animal MRI on a clinical whole-body 3 T scanner. MAGMA 25:233–244. doi:10.1007/s10334-011-0284-5

    Article  PubMed  Google Scholar 

  63. Hiba B, Richard N, Janier M, Croisille P (2006) Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 55:506–513. doi:10.1002/mrm.20815

    Article  PubMed  Google Scholar 

  64. Hiba B, Richard N, Thibault H, Janier M (2007) Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7 T. Magn Reson Med 58:745–753. doi:10.1002/mrm.21355

    Article  PubMed  Google Scholar 

  65. Hoerr V, Nagelmann N, Nauerth A, Kuhlmann MT, Stypmann J, Faber C (2013) Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields. J Cardiovasc Magn Reson 15:59. doi:10.1186/1532-429X-15-59

    Article  PubMed  PubMed Central  Google Scholar 

  66. Howles GP, Ghaghada KB, Qi Y, Mukundan S Jr, Johnson GA (2009) High-resolution magnetic resonance angiography in the mouse using a nanoparticle blood-pool contrast agent. Magn Reson Med 62:1447–1456. doi:10.1002/mrm.22154

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hu TC, Bao W, Lenhard SC, Schaeffer TR, Yue TL, Willette RN, Jucker BM (2004) Simultaneous assessment of left-ventricular infarction size, function and tissue viability in a murine model of myocardial infarction by cardiac manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 17:620–626. doi:10.1002/nbm.933

    Article  CAS  PubMed  Google Scholar 

  68. Hu TC, Pautler RG, MacGowan GA, Koretsky AP (2001) Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 46:884–890

    Article  CAS  PubMed  Google Scholar 

  69. Huby AC, Mendsaikhan U, Takagi K, Martherus R, Wansapura J, Gong N, Osinska H, James JF, Kramer K, Saito K, Robbins J, Khuchua Z, Towbin JA, Purevjav E (2014) Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J Am Coll Cardiol 64:2765–2776. doi:10.1016/j.jacc.2014.09.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jacoby C, Borg N, Heusch P, Sauter M, Bonner F, Kandolf R, Klingel K, Schrader J, Flogel U (2014) Visualization of immune cell infiltration in experimental viral myocarditis by (19)F MRI in vivo. MAGMA 27:101–106. doi:10.1007/s10334-013-0391-6

    Article  CAS  PubMed  Google Scholar 

  71. Jacoby C, Boring YC, Beck A, Zernecke A, Aurich V, Weber C, Schrader J, Flogel U (2008) Dynamic changes in murine vessel geometry assessed by high-resolution magnetic resonance angiography: a 9.4 T study. J Magn Reson Imaging 28:637–645. doi:10.1002/jmri.21482

    Article  PubMed  Google Scholar 

  72. Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I (2007) Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 115:1769–1776. doi:10.1161/CIRCULATIONAHA.106.652016

    Article  PubMed  Google Scholar 

  73. Janiczek RL, Blackman BR, Roy RJ, Meyer CH, Acton ST, Epstein FH (2011) Three-dimensional phase contrast angiography of the mouse aortic arch using spiral MRI. Magn Reson Med 66:1382–1390. doi:10.1002/mrm.22937

    Article  PubMed  PubMed Central  Google Scholar 

  74. Janssen BJ, De Celle T, Debets JJ, Brouns AE, Callahan MF, Smith TL (2004) Effects of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ Physiol 287:H1618–H1624. doi:10.1152/ajpheart.01192.2003

    Article  CAS  PubMed  Google Scholar 

  75. Janssen PM, Murray JD, Schill KE, Rastogi N, Schultz EJ, Tran T, Raman SV, Rafael-Fortney JA (2014) Prednisolone attenuates improvement of cardiac and skeletal contractile function and histopathology by lisinopril and spironolactone in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 9:e88360. doi:10.1371/journal.pone.0088360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  CAS  PubMed  Google Scholar 

  77. Jiang K, Li W, Li W, Jiao S, Castel L, Van Wagoner DR, Yu X (2014) Rapid multislice T mapping of mouse myocardium: application to quantification of manganese uptake in alpha-Dystrobrevin knockout mice. Magn Reson Med. doi:10.1002/mrm.25533

    PubMed Central  Google Scholar 

  78. Jilkina O, Xiang B, Kuzio B, Rendell J, Kupriyanov VV (2005) Potassium transport in Langendorff-perfused mouse hearts assessed by 87Rb NMR spectroscopy. Magn Reson Med 53:1172–1176. doi:10.1002/mrm.20450

    Article  CAS  PubMed  Google Scholar 

  79. Jung B, Odening KE, Dall’Armellina E, Foll D, Menza M, Markl M, Schneider JE (2012) A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in vivo phase contrast CMR. J Cardiovasc Magn Reson 14:87. doi:10.1186/1532-429X-14-87

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kampf T, Helluy X, Gutjahr FT, Winter P, Meyer CB, Jakob PM, Bauer WR, Ziener CH (2014) Myocardial perfusion quantification using the T1 -based FAIR-ASL method: the influence of heart anatomy, cardiopulmonary blood flow and look-locker readout. Magn Reson Med 71:1784–1797. doi:10.1002/mrm.24843

    Article  PubMed  Google Scholar 

  81. Kim RJ, Lima JA, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95:1877–1885

    Article  CAS  PubMed  Google Scholar 

  82. Klink A, Heynens J, Herranz B, Lobatto ME, Arias T, Sanders HM, Strijkers GJ, Merkx M, Nicolay K, Fuster V, Tedgui A, Mallat Z, Mulder WJ, Fayad ZA (2011) In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 58:2522–2530. doi:10.1016/j.jacc.2011.09.017

    Article  PubMed  PubMed Central  Google Scholar 

  83. Klink A, Hyafil F, Rudd J, Faries P, Fuster V, Mallat Z, Meilhac O, Mulder WJ, Michel JB, Ramirez F, Storm G, Thompson R, Turnbull IC, Egido J, Martin-Ventura JL, Zaragoza C, Letourneur D, Fayad ZA (2011) Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nat Rev Cardiol 8:338–347. doi:10.1038/nrcardio.2011.1

    Article  PubMed  Google Scholar 

  84. Kohler S, Hiller KH, Griswold M, Bauer WR, Haase A, Jakob PM (2003) NMR-microscopy with TrueFISP at 11.75 T. J Magn Reson 161:252–257

    Article  CAS  PubMed  Google Scholar 

  85. Lairez O, Lonjaret L, Ruiz S, Marchal P, Franchitto N, Calise D, Fourcade O, Mialet-Perez J, Parini A, Minville V (2013) Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Lab Anim 47:284–290. doi:10.1177/0023677213496236

    Article  PubMed  CAS  Google Scholar 

  86. Lefrancois W, Thiaudiere E, Ben Hassen W, Sanchez S, Franconi JM, Miraux S (2011) Fast whole-body magnetic resonance angiography in mice. Magn Reson Med 66:32–39. doi:10.1002/mrm.22985

    Article  PubMed  Google Scholar 

  87. Li W, Griswold M, Yu X (2012) Fast cardiac T1 mapping in mice using a model-based compressed sensing method. Magn Reson Med 68:1127–1134. doi:10.1002/mrm.23323

    Article  PubMed  Google Scholar 

  88. Li W, Griswold M, Yu X (2010) Rapid T1 mapping of mouse myocardium with saturation recovery look-locker method. Magn Reson Med 64:1296–1303. doi:10.1002/mrm.22544

    Article  PubMed  PubMed Central  Google Scholar 

  89. Li W, Liu W, Zhong J, Yu X (2009) Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson 11:40. doi:10.1186/1532-429X-11-40

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li W, Yu X (2010) Quantification of myocardial strain at early systole in mouse heart: restoration of undeformed tagging grid with single-point HARP. J Magn Reson Imaging 32:608–614. doi:10.1002/jmri.22256

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu G, Song X, Chan KW, McMahon MT (2013) Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 26:810–828. doi:10.1002/nbm.2899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 41:250–251. doi:10.1063/1.1684482

    Article  CAS  Google Scholar 

  93. Lu M, Atthe B, Mateescu GD, Flask CA, Yu X (2012) Assessing mitochondrial respiration in isolated hearts using (17)O MRS. NMR Biomed 25:883–889. doi:10.1002/nbm.1807

    Article  CAS  PubMed  Google Scholar 

  94. Maguire ML, Geethanath S, Lygate CA, Kodibagkar VD, Schneider JE (2015) Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson 17:45. doi:10.1186/s12968-015-0149-6

    Article  PubMed  PubMed Central  Google Scholar 

  95. Majmudar MD, Yoo J, Keliher EJ, Truelove JJ, Iwamoto Y, Sena B, Dutta P, Borodovsky A, Fitzgerald K, Di Carli MF, Libby P, Anderson DG, Swirski FK, Weissleder R, Nahrendorf M (2013) Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 112:755–761. doi:10.1161/CIRCRESAHA.111.300576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81. doi:10.1002/mrm.21642

    Article  PubMed  Google Scholar 

  97. Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, Purschke ML, Rescia S, Southekal S, Pratte JF, Vaska P, Woody CL, Schlyer DJ (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56:2459–2480. doi:10.1088/0031-9155/56/8/009

    Article  PubMed  Google Scholar 

  98. Messner NM, Zollner FG, Kalayciyan R, Schad LR (2014) Pre-clinical functional magnetic resonance imaging. Part II: the heart. Z Med Phys 24:307–322. doi:10.1016/j.zemedi.2014.06.008

    Article  PubMed  Google Scholar 

  99. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146. doi:10.1002/mrm.20110

    Article  PubMed  Google Scholar 

  100. Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB, Society for Cardiovascular Magnetic Resonance I, Cardiovascular Magnetic Resonance Working Group of the European Society of C (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. doi:10.1186/1532-429X-15-92

    Article  PubMed  PubMed Central  Google Scholar 

  101. Moser E, Stahlberg F, Ladd ME, Trattnig S (2012) 7-T MR-from research to clinical applications? NMR Biomed 25:695–716. doi:10.1002/nbm.1794

    Article  PubMed  Google Scholar 

  102. Mosher TJ, Smith MB (1990) A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med 15:334–339

    Article  CAS  PubMed  Google Scholar 

  103. Motaal AG, Coolen BF, Abdurrachim D, Castro RM, Prompers JJ, Florack LM, Nicolay K, Strijkers GJ (2013) Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction. NMR Biomed 26:451–457. doi:10.1002/nbm.2883

    Article  PubMed  Google Scholar 

  104. Nahrendorf M, Hiller KH, Hu K, Ertl G, Haase A, Bauer WR (2003) Cardiac magnetic resonance imaging in small animal models of human heart failure. Med Image Anal 7:369–375

    Article  CAS  PubMed  Google Scholar 

  105. Nahrendorf M, Streif JU, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik D, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR (2006) Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. Am J Physiol Heart Circ Physiol 290:H2516–H2521. doi:10.1152/ajpheart.01038.2005

    Article  CAS  PubMed  Google Scholar 

  106. Naresh NK, Chen X, Roy RJ, Antkowiak PF, Annex BH, Epstein FH (2015) Accelerated dual-contrast first-pass perfusion MRI of the mouse heart: development and application to diet-induced obese mice. Magn Reson Med 73:1237–1245. doi:10.1002/mrm.25238

    Article  CAS  PubMed  Google Scholar 

  107. Naresh NK, Xu Y, Klibanov AL, Vandsburger MH, Meyer CH, Leor J, Kramer CM, French BA, Epstein FH (2012) Monocyte and/or macrophage infiltration of heart after myocardial infarction: MR imaging using T1-shortening liposomes. Radiology 264:428–435. doi:10.1148/radiol.12111863

    Article  PubMed  PubMed Central  Google Scholar 

  108. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151. doi:10.1056/NEJMra063052

    Article  PubMed  Google Scholar 

  109. Neuberger T, Greiser A, Nahrendorf M, Jakob PM, Faber C, Webb AG (2004) 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA 17:196–200. doi:10.1007/s10334-004-0048-6

    Article  CAS  PubMed  Google Scholar 

  110. Nick H, Allegrini PR, Fozard L, Junker U, Rojkjaer L, Salie R, Niederkofler V, O’Reilly T (2009) Deferasirox reduces iron overload in a murine model of juvenile hemochromatosis. Exp Biol Med (Maywood) 234:492–503. doi:10.3181/0811-RM-337

    Article  CAS  Google Scholar 

  111. Odintsov B, Chun JL, Mulligan JA, Berry SE (2011) 14.1 T whole body MRI for detection of mesoangioblast stem cells in a murine model of Duchenne muscular dystrophy. Magn Reson Med 66:1704–1714. doi:10.1002/mrm.22942

    Article  PubMed  Google Scholar 

  112. Ojha N, Roy S, Radtke J, Simonetti O, Gnyawali S, Zweier JL, Kuppusamy P, Sen CK (2008) Characterization of the structural and functional changes in the myocardium following focal ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 294:H2435–H2443. doi:10.1152/ajpheart.01190.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Okayama S, Nakano T, Uemura S, Fujimoto S, Somekawa S, Watanabe M, Nakajima T, Saito Y (2013) Evaluation of left ventricular diastolic function by fractional area change using cine cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson 15:87. doi:10.1186/1532-429X-15-87

    Article  PubMed  PubMed Central  Google Scholar 

  114. Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Parzy E, Miraux S, Franconi JM, Thiaudiere E (2009) In vivo quantification of blood velocity in mouse carotid and pulmonary arteries by ECG-triggered 3D time-resolved magnetic resonance angiography. NMR Biomed 22:532–537. doi:10.1002/nbm.1365

    Article  PubMed  Google Scholar 

  116. Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF (2010) Cardiovascular magnetic resonance imaging in experimental models. Open Cardiovasc Med J 4:278–292. doi:10.2174/1874192401004010278

    Article  PubMed  PubMed Central  Google Scholar 

  117. Price AN, Cheung KK, Lim SY, Yellon DM, Hausenloy DJ, Lythgoe MF (2011) Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. J Cardiovasc Magn Reson 13:44. doi:10.1186/1532-429X-13-44

    Article  PubMed  PubMed Central  Google Scholar 

  118. Protti A, Sirker A, Shah AM, Botnar R (2010) Late gadolinium enhancement of acute myocardial infarction in mice at 7 T: cine-FLASH versus inversion recovery. J Magn Reson Imaging 32:878–886. doi:10.1002/jmri.22325

    Article  PubMed  Google Scholar 

  119. Rafael-Fortney JA, Chimanji NS, Schill KE, Martin CD, Murray JD, Ganguly R, Stangland JE, Tran T, Xu Y, Canan BD, Mays TA, Delfin DA, Janssen PM, Raman SV (2011) Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124:582–588. doi:10.1161/CIRCULATIONAHA.111.031716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A (1998) Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med 40:43–48

    Article  CAS  PubMed  Google Scholar 

  121. Salerno M, Kramer CM (2013) Advances in parametric mapping with CMR imaging. JACC Cardiovasc Imaging 6:806–822. doi:10.1016/j.jcmg.2013.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  122. Schmitter S, Wu X, Adriany G, Auerbach EJ, Ugurbil K, Moortele PF (2014) Cerebral TOF angiography at 7 T: impact of B1 (+) shimming with a 16-channel transceiver array. Magn Reson Med 71:966–977. doi:10.1002/mrm.24749

    Article  PubMed  PubMed Central  Google Scholar 

  123. Schneider JE, Cassidy PJ, Lygate C, Tyler DJ, Wiesmann F, Grieve SM, Hulbert K, Clarke K, Neubauer S (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging 18:691–701. doi:10.1002/jmri.10411

    Article  PubMed  Google Scholar 

  124. Schneider JE, Lanz T, Barnes H, Stork LA, Bohl S, Lygate CA, Ordidge RJ, Neubauer S (2011) Accelerated cardiac magnetic resonance imaging in the mouse using an eight-channel array at 9.4 Tesla. Magn Reson Med 65:60–70. doi:10.1002/mrm.22605

    Article  PubMed  Google Scholar 

  125. Schneider JE, Tyler DJ, ten Hove M, Sang AE, Cassidy PJ, Fischer A, Wallis J, Sebag-Montefiore LM, Watkins H, Isbrandt D, Clarke K, Neubauer S (2004) In vivo cardiac 1H-MRS in the mouse. Magn Reson Med 52:1029–1035. doi:10.1002/mrm.20257

    Article  CAS  PubMed  Google Scholar 

  126. Shan K, Constantine G, Sivananthan M, Flamm SD (2004) Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation 109:1328–1334. doi:10.1161/01.CIR.0000120294.67948.E3

    Article  PubMed  Google Scholar 

  127. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK (1997) Simultaneous PET and MR imaging. Phys Med Biol 42:1965–1970

    Article  CAS  PubMed  Google Scholar 

  128. Shea SM, Fieno DS, Schirf BE, Bi X, Huang J, Omary RA, Li D (2005) T2-prepared steady-state free precession blood oxygen level-dependent MR imaging of myocardial perfusion in a dog stenosis model. Radiology 236:503–509. doi:10.1148/radiol.2362040149

    Article  PubMed  Google Scholar 

  129. Skardal K, Rolim NP, Haraldseth O, Goa PE, Thuen M (2013) Late gadolinium enhancement in the assessment of the infarcted mouse heart: a longitudinal comparison with manganese-enhanced MRI. J Magn Reson Imaging 38:1388–1394. doi:10.1002/jmri.24127

    Article  PubMed  Google Scholar 

  130. Song R, Lin W, Chen Q, Asakura T, Wehrli FW, Song HK (2008) Relationships between MR transverse relaxation parameters R*(2), R(2) and R’(2) and hepatic iron content in thalassemic mice at 1.5 T and 3 T. NMR Biomed 21:574–580. doi:10.1002/nbm.1227

    Article  PubMed  Google Scholar 

  131. Song W, Dyer E, Stuckey D, Leung MC, Memo M, Mansfield C, Ferenczi M, Liu K, Redwood C, Nowak K, Harding S, Clarke K, Wells D, Marston S (2010) Investigation of a transgenic mouse model of familial dilated cardiomyopathy. J Mol Cell Cardiol 49:380–389. doi:10.1016/j.yjmcc.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  132. Sosnovik DE, Dai G, Nahrendorf M, Rosen BR, Seethamraju R (2007) Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm. J Magn Reson Imaging 26:279–287. doi:10.1002/jmri.20966

    Article  PubMed  Google Scholar 

  133. Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115:1384–1391. doi:10.1161/CIRCULATIONAHA.106.663351

    Article  PubMed  Google Scholar 

  134. Streif JU, Herold V, Szimtenings M, Lanz TE, Nahrendorf M, Wiesmann F, Rommel E, Haase A (2003) In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI. Magn Reson Med 49:315–321. doi:10.1002/mrm.10342

    Article  PubMed  Google Scholar 

  135. Streif JU, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR (2005) In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 53:584–592. doi:10.1002/mrm.20327

    Article  PubMed  Google Scholar 

  136. Stuckey DJ, Carr CA, Camelliti P, Tyler DJ, Davies KE, Clarke K (2012) In vivo MRI characterization of progressive cardiac dysfunction in the mdx mouse model of muscular dystrophy. PLoS One 7:e28569. doi:10.1371/journal.pone.0028569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stuckey DJ, Carr CA, Tyler DJ, Clarke K (2008) Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart. NMR Biomed 21:765–772. doi:10.1002/nbm.1268

    Article  PubMed  Google Scholar 

  138. Stuckey DJ, McSweeney SJ, Thin MZ, Habib J, Price AN, Fiedler LR, Gsell W, Prasad SK, Schneider MD (2014) T(1) mapping detects pharmacological retardation of diffuse cardiac fibrosis in mouse pressure-overload hypertrophy. Circ Cardiovasc Imaging 7:240–249. doi:10.1161/CIRCIMAGING.113.000993

    Article  PubMed  Google Scholar 

  139. Stypmann J (2007) Doppler ultrasound in mice. Echocardiography 24:97–112. doi:10.1111/j.1540-8175.2006.00358.x

    Article  PubMed  Google Scholar 

  140. Suever JD, Wehner GJ, Haggerty CM, Jing L, Hamlet SM, Binkley CM, Kramer SP, Mattingly AC, Powell DK, Bilchick KC, Epstein FH, Fornwalt BK (2014) Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. J Cardiovasc Magn Reson 16:94. doi:10.1186/s12968-014-0094-9

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tangney JR, Chuang JS, Janssen MS, Krishnamurthy A, Liao P, Hoshijima M, Wu X, Meininger GA, Muthuchamy M, Zemljic-Harpf A, Ross RS, Frank LR, McCulloch AD, Omens JH (2013) Novel role for vinculin in ventricular myocyte mechanics and dysfunction. Biophys J 104:1623–1633. doi:10.1016/j.bpj.2013.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Temme S, Grapentin C, Quast C, Jacoby C, Grandoch M, Ding Z, Owenier C, Mayenfels F, Fischer JW, Schubert R, Schrader J, Flogel U (2015) Noninvasive imaging of early venous thrombosis by 19F magnetic resonance imaging with targeted perfluorocarbon nanoemulsions. Circulation 131:1405–1414. doi:10.1161/CIRCULATIONAHA.114.010962

    Article  CAS  PubMed  Google Scholar 

  143. ten Hove M, Lygate CA, Fischer A, Schneider JE, Sang AE, Hulbert K, Sebag-Montefiore L, Watkins H, Clarke K, Isbrandt D, Wallis J, Neubauer S (2005) Reduced inotropic reserve and increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice. Circulation 111:2477–2485. doi:10.1161/01.CIR.0000165147.99592.01

    Article  PubMed  CAS  Google Scholar 

  144. Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F (2013) Cine-ASL: a steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part I. Experimental study. Magn Reson Med 70:1389–1398. doi:10.1002/mrm.24565

    Article  PubMed  Google Scholar 

  145. Trotier AJ, Lefrancois W, Ribot EJ, Thiaudiere E, Franconi JM, Miraux S (2015) Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach. Magn Reson Med 73:984–994. doi:10.1002/mrm.25201

    Article  PubMed  Google Scholar 

  146. Tucci S, Flogel U, Hermann S, Sturm M, Schafers M, Spiekerkoetter U (2014) Development and pathomechanisms of cardiomyopathy in very long-chain acyl-CoA dehydrogenase deficient (VLCAD(−/−)) mice. Biochim Biophys Acta 1842:677–685. doi:10.1016/j.bbadis.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  147. Tyrankiewicz U, Skorka T, Jablonska M, Petkow-Dimitrow P, Chlopicki S (2013) Characterization of the cardiac response to a low and high dose of dobutamine in the mouse model of dilated cardiomyopathy by MRI in vivo. J Magn Reson Imaging 37:669–677. doi:10.1002/jmri.23854

    Article  PubMed  Google Scholar 

  148. Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. MAGMA 17:149–156. doi:10.1007/s10334-004-0066-4

    Article  PubMed  Google Scholar 

  149. van Bochove GS, Straathof R, Krams R, Nicolay K, Strijkers GJ (2010) MRI-determined carotid artery flow velocities and wall shear stress in a mouse model of vulnerable and stable atherosclerotic plaque. MAGMA 23:77–84. doi:10.1007/s10334-010-0200-4

    Article  PubMed  CAS  Google Scholar 

  150. van de Weijer T, van Ewijk PA, Zandbergen HR, Slenter JM, Kessels AG, Wildberger JE, Hesselink MK, Schrauwen P, Schrauwen-Hinderling VB, Kooi ME (2012) Geometrical models for cardiac MRI in rodents: comparison of quantification of left ventricular volumes and function by various geometrical models with a full-volume MRI data set in rodents. Am J Physiol Heart Circ Physiol 302:H709–H715. doi:10.1152/ajpheart.00710.2011

    Article  PubMed  CAS  Google Scholar 

  151. van Geuns RJ, Wielopolski PA, de Bruin HG, Rensing BJ, van Ooijen PM, Hulshoff M, Oudkerk M, de Feyter PJ (1999) Basic principles of magnetic resonance imaging. Prog Cardiovasc Dis 42:149–156

    Article  PubMed  Google Scholar 

  152. van Heeswijk RB, De Blois J, Kania G, Gonzales C, Blyszczuk P, Stuber M, Eriksson U, Schwitter J (2013) Selective in vivo visualization of immune-cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance. Circ Cardiovasc Imaging 6:277–284. doi:10.1161/CIRCIMAGING.112.000125

    Article  PubMed  Google Scholar 

  153. van Heeswijk RB, Pellegrin M, Flogel U, Gonzales C, Aubert JF, Mazzolai L, Schwitter J, Stuber M (2015) Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology 275:421–429. doi:10.1148/radiol.14141371

    Article  PubMed  Google Scholar 

  154. van Nierop BJ, Coolen BF, Bax NA, Dijk WJ, van Deel ED, Duncker DJ, Nicolay K, Strijkers GJ (2014) Myocardial perfusion MRI shows impaired perfusion of the mouse hypertrophic left ventricle. Int J Cardiovasc Imaging 30:619–628. doi:10.1007/s10554-014-0369-0

    Article  PubMed  Google Scholar 

  155. van Nierop BJ, Coolen BF, Dijk WJ, Hendriks AD, de Graaf L, Nicolay K, Strijkers GJ (2013) Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med 69:1735–1744. doi:10.1002/mrm.24424

    Article  PubMed  CAS  Google Scholar 

  156. van Oorschot JW, Gho JM, van Hout GP, Froeling M, Jansen Of Lorkeers SJ, Hoefer IE, Doevendans PA, Luijten PR, Chamuleau SA, Zwanenburg JJ (2015) Endogenous contrast MRI of cardiac fibrosis: beyond late gadolinium enhancement. J Magn Reson Imaging 41:1181–1189. doi:10.1002/jmri.24715

    Article  PubMed  Google Scholar 

  157. Vandenberghe S, Marsden PK (2015) PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60:R115–R154. doi:10.1088/0031-9155/60/4/R115

    Article  PubMed  Google Scholar 

  158. Vandsburger M, Vandoorne K, Oren R, Leftin A, Mpofu S, Delli Castelli D, Aime S, Neeman M (2015) Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media. Circ Cardiovasc Imaging. doi:10.1161/CIRCIMAGING.114.002180

    PubMed  Google Scholar 

  159. Vandsburger MH, Epstein FH (2011) Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4:477–492. doi:10.1007/s12265-011-9275-1

    Article  PubMed  PubMed Central  Google Scholar 

  160. Vandsburger MH, French BA, Helm PA, Roy RJ, Kramer CM, Young AA, Epstein FH (2007) Multi-parameter in vivo cardiac magnetic resonance imaging demonstrates normal perfusion reserve despite severely attenuated beta-adrenergic functional response in neuronal nitric oxide synthase knockout mice. Eur Heart J 28:2792–2798. doi:10.1093/eurheartj/ehm241

    Article  CAS  PubMed  Google Scholar 

  161. Vandsburger MH, French BA, Kramer CM, Zhong X, Epstein FH (2012) Displacement-encoded and manganese-enhanced cardiac MRI reveal that nNOS, not eNOS, plays a dominant role in modulating contraction and calcium influx in the mammalian heart. Am J Physiol Heart Circ Physiol 302:H412–H419. doi:10.1152/ajpheart.00705.2011

    Article  CAS  PubMed  Google Scholar 

  162. Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, Epstein FH (2010) Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med 63:648–657. doi:10.1002/mrm.22280

    Article  PubMed  PubMed Central  Google Scholar 

  163. Vanhoutte L, Gallez B, Feron O, Balligand JL, Esfahani H, d’Hoore W, Moniotte S (2015) Variability of mouse left ventricular function assessment by 11.7 Tesla MRI. J Cardiovasc Transl Res. doi:10.1007/s12265-015-9638-0

    PubMed  Google Scholar 

  164. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327. doi:10.1016/j.jacc.2009.10.061

    Article  PubMed  Google Scholar 

  165. von Elverfeldt D, Maier A, Duerschmied D, Braig M, Witsch T, Wang X, Mauler M, Neudorfer I, Menza M, Idzko M, Zirlik A, Heidt T, Bronsert P, Bode C, Peter K, von Zur Muhlen C (2014) Dual-contrast molecular imaging allows noninvasive characterization of myocardial ischemia/reperfusion injury after coronary vessel occlusion in mice by magnetic resonance imaging. Circulation 130:676–687. doi:10.1161/CIRCULATIONAHA.113.008157

    Article  CAS  Google Scholar 

  166. von Morze C, Xu D, Purcell DD, Hess CP, Mukherjee P, Saloner D, Kelley DA, Vigneron DB (2007) Intracranial time-of-flight MR angiography at 7 T with comparison to 3 T. J Magn Reson Imaging 26:900–904. doi:10.1002/jmri.21097

    Article  Google Scholar 

  167. Wagenhaus B, Pohlmann A, Dieringer MA, Els A, Waiczies H, Waiczies S, Schulz-Menger J, Niendorf T (2012) Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil. PLoS One 7:e42383. doi:10.1371/journal.pone.0042383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Waghorn B, Edwards T, Yang Y, Chuang KH, Yanasak N, Hu TC (2008) Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR Biomed 21:1102–1111. doi:10.1002/nbm.1287

    Article  CAS  PubMed  Google Scholar 

  169. Waghorn B, Yang Y, Baba A, Matsuda T, Schumacher A, Yanasak N, Hu TC (2009) Assessing manganese efflux using SEA0400 and cardiac T1-mapping manganese-enhanced MRI in a murine model. NMR Biomed 22:874–881. doi:10.1002/nbm.1414

    Article  CAS  PubMed  Google Scholar 

  170. Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR (2000) Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197. doi:10.1148/radiology.215.1.r00ap07189

    Article  CAS  PubMed  Google Scholar 

  171. Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68. doi:10.1007/s00259-009-1078-0

    Article  PubMed  Google Scholar 

  172. Weissler B, Gebhardt P, Duppenbecker P, Wehner J, Schug D, Lerche C, Goldschmidt B, Salomon A, Verel I, Heijman E, Perkuhn M, Heberling D, Botnar R, Kiessling F, Schulz V (2015) A digital preclinical PET/MRI insert and initial results. IEEE Trans Med Imaging. doi:10.1109/TMI.2015.2427993

    PubMed  Google Scholar 

  173. Wiesmann F, Neubauer S, Haase A, Hein L (2001) Can we use vertical bore magnetic resonance scanners for murine cardiovascular phenotype characterization? Influence of upright body position on left ventricular hemodynamics in mice. J Cardiovasc Magn Reson 3:311–315

    Article  CAS  PubMed  Google Scholar 

  174. Wiesmann F, Ruff J, Engelhardt S, Hein L, Dienesch C, Leupold A, Illinger R, Frydrychowicz A, Hiller KH, Rommel E, Haase A, Lohse MJ, Neubauer S (2001) Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res 88:563–569

    Article  CAS  PubMed  Google Scholar 

  175. Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol 278:H652–H657

    CAS  PubMed  Google Scholar 

  176. Zhao X, Pratt R, Wansapura J (2009) Quantification of aortic compliance in mice using radial phase contrast MRI. J Magn Reson Imaging 30:286–291. doi:10.1002/jmri.21846

    Article  CAS  PubMed  Google Scholar 

  177. Zhong J, Yu X (2010) Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med 64:1315–1322. doi:10.1002/mrm.22530

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zhong X, Gibberman LB, Spottiswoode BS, Gilliam AD, Meyer CH, French BA, Epstein FH (2011) Comprehensive cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE. J Cardiovasc Magn Reson 13:83. doi:10.1186/1532-429X-13-83

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Hassan Jassar and Nicolas Joudiou for assistance during MRI manipulations. This work was supported by Grants from the Fonds de la Recherche Scientifique FRS-FNRS, the Foundation Saint-Luc and the Belgian National Foundation for Research in Pediatric Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Vanhoutte.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhoutte, L., Gerber, B.L., Gallez, B. et al. High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 111, 46 (2016). https://doi.org/10.1007/s00395-016-0565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0565-2

Keywords

Navigation