Skip to main content

Advertisement

Log in

Active AMOC–NAO coupling in the IPSL-CM5A-MR climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The atmospheric response to the AMOC variability is investigated in the IPSL-CM5A medium resolution climate model, using lagged maximum covariance analysis (MCA) of a control simulation. A robust atmospheric response is detected in winter, with a negative NAO-like response following by about 9-year an AMOC intensification in the North Atlantic, with a pattern broadly resembling the second mode of AMOC variability. The response is established through the SST footprint of the AMOC and the associated surface heat flux damping, with a dipole of SST anomalies made of cold SST in the Gulf Stream region and warm SST further northeast around the North Atlantic Current. The dipole SST anomaly pattern evolves synchronously with the AMOC changes at its dominant 20-year period, so that the lagged NAO-like response detected by MCA actually reflects the near-synchronous AMOC influence on the atmosphere, which is masked at short time lag by the stronger atmospheric forcing of the AMOC. The atmospheric response to an intensification of the AMOC is thus a positive NAO-like pattern, together with an anomalous low pressure over the Aleutians, opposite to that detected at 9-year lag by the MCA. Since the NAO also contributes to force the AMOC, there is a positive feedback between AMOC and NAO in the model, with the atmospheric feedback strength about 1/4 of that of the atmospheric forcing, which enhances the low frequency variability of AMOC. This is further confirmed by the lead-lag relation between the dominant mode of ocean and atmosphere, and by the robust 20-year period of the NAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 69(12):3788–3799

    Article  Google Scholar 

  • Banta JR, McConnell JR (2007) Annual accumulation over recent centuries at four sites in central Greenland. J Geophys Res. doi:10.1029/2006JD007887

    Google Scholar 

  • Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26(18):7117–7135

    Article  Google Scholar 

  • Booth BB, Dunstone NJ, Halloran PR et al (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Cayan DY (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Cheng X, Dunkerton TJ (1995) Orthogonal rotation of spatial patterns derived from singular value decomposition analysis. J Clim 8:2631–2643

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng SL (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. Clim Dyn 20:4751–4767

    Article  Google Scholar 

  • Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Clim 21:4919–4933

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J Clim 18:1117–1135

    Article  Google Scholar 

  • Dufresne J, Foujols S, Denvil S et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Escudier R, Mignot J, Swingedouw D (2013) A 20-year coupled ocean-seaice-atmosphere variability mode in the North Atlantic in an AOGCM. Clim Dyn 40:619–636

    Article  Google Scholar 

  • Farneti R, Vallis GK (2009) Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Clim Dyn. doi:10.1007/s00382-009-0674-9

    Google Scholar 

  • Frankcombe L, Dijsktra HA, von der Heydt A (2008) Sub-surface signatures of the Atlantic Multidecadal Oscillation. Res. Lett, Geophys. doi:10.1029/2008GL034989

    Google Scholar 

  • Frankcombe L, von der Heydt A, Dijsktra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638

    Article  Google Scholar 

  • Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305

    Article  Google Scholar 

  • Frankignoul C, Kestenare E (2002) The surface heat flux feedback. Part I: estimates from observations in the Atlantic and the North Pacific. Clim Dyn 19:633–647

    Article  Google Scholar 

  • Frankignoul C, Czaja A, Heveder B (1998) Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J Clim 11:2310–2324

    Article  Google Scholar 

  • Frankignoul C, Gastineau G, Know YO (2013) The influence of the AMOC variability on the atmosphere in CCSM3. J Clim 26:9774–9790

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J Clim 16:696–705

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39:37–57

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2015) Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth-century. J Clim, Accepted

    Google Scholar 

  • Hodson D, Sutton R, Cassou C et al (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34:1041–1058

    Article  Google Scholar 

  • Hoskins B, Valdes P (1990) On the existence of storm tracks. J Atmos Sci 47:1854–1864

    Article  Google Scholar 

  • Huck T, Verdiere AC, Weaver AJ (1999) Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J Phys Oceanogr 29:865–892

    Article  Google Scholar 

  • Johns W et al (2011) Continuous, array-based estimates of the Atlantic Ocean heat transport at 26.5N. J Clim 24:2429–2449

    Article  Google Scholar 

  • Jungclaus J, Haak H, Latif M et al (2005) Arctic-North Atlantic interactions and multi-decadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Knight J, Allan R, Folland C et al (2005) A signature of persistent natural thermohaline circulations in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Kwon Y, Frankignoul C (2014) Mechanisms of multidecadal Atlantic meridional overturning circulation variability diagnosed in depth versus density space. J Clim 27(24):9359–9376

    Article  Google Scholar 

  • Latif M, Roeckner E, Botzet M et al (2004) Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with the sea surface temperature. J Clim 17:1605–1614

    Article  Google Scholar 

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995

    Article  Google Scholar 

  • MacMartin D, Tziperman E, Zanna L (2013) Frequency domain multimodel analysis of the response of atlantic meridional overturning circulation to surface forcing. J Clim 26(21):8323–8340

    Article  Google Scholar 

  • Marini C, Frankignoul C (2013) An attempt to deconstruct the Atlantic multidecadal oscillation. Clim Dyn 43:607–625. doi:10.1007/s00382-013-1852-3

    Article  Google Scholar 

  • McCarthy G, Frajka-Williams E, Johns WE, Baringer MO et al (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys Res Lett. doi:10.1029/2012GL052933

    Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperature: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62

    Article  Google Scholar 

  • Ortega P, Mignot J, Swingedouw D, et al. (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog Oceanogr 137:237–249

    Article  Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19:6062–6067

    Article  Google Scholar 

  • Rayner D et al (2011) Monitoring the Atlantic meridional overturning circulation. J Clim 58:1744–1753

    Google Scholar 

  • Rodwell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical north Africa (1906–92): observations and modeling. Q J R Meterorol Soc 121:669–704

    Google Scholar 

  • Sévellec F, Fedorov A (2013) The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J Clim 26(7):2160–2183

    Article  Google Scholar 

  • Sévellec F, Huch T (2015) Theoretical investigation of the Atlantic multidecadal oscillation. J Phys Oceanogr 45(9):150413133522004. doi: 10.1175/JPO-D-14-0094.1

    Google Scholar 

  • Sutton RW, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Teng H, Branstator G, Meehl G (2011) Predictability of the Atlantic overturning circulation and its associated surface patterns in two CCSM3 climate change ensemble experiments. J Clim 24:6054–6076

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R et al (1998) Northern hemispheric interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Article  Google Scholar 

  • Ting M, Kushnir Y, Li C (2014) North Atlantic Multidecadal SST Oscillation: external forcing versus internal variability. J Mar Syst 133:27–38

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Wen N, Liu Z, Liu Q, Frankignoul C (2010) Observed atmospheric responses to global SST variability modes: a unified assessment using GEFA. J Clim 23:1739–1759

    Article  Google Scholar 

  • Yeager S, Danabasoglu G (2014) The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J Clim 27:3222–3246

    Article  Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G et al (2012) A decadal prediction case study: late twentieth-centrury North Atlantic Ocean heat content. J Clim 25:5173–5189

    Article  Google Scholar 

Download references

Acknowledgments

I’d like to thank Drs. Mignot J, Li ZX, Liu ZY and Otega P. for the helpful discussions. We thank the ciclad facility supported by CNRS, UPMC, Labex L-IPSL funded by the ANR (Grant #ANR-10-LABX-0018) and by the European FP7 IS-ENES2 project (Grant #312979). This work is supported by China Scholarship Council (CSC), the European Union 7th Framework Programme (FP7 2007-2013) under Grant Agreement Nos. 308299(NACLIM) and NSFC41475089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, N., Frankignoul, C. & Gastineau, G. Active AMOC–NAO coupling in the IPSL-CM5A-MR climate model. Clim Dyn 47, 2105–2119 (2016). https://doi.org/10.1007/s00382-015-2953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2953-y

Keywords

Navigation