Skip to main content
Log in

Robust Localization of the Best Error with Finite Elements in the Reaction-Diffusion Norm

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider the approximation in the reaction-diffusion norm with continuous finite elements and prove that the best error is equivalent to a sum of the local best errors on pairs of elements. The equivalence constants do not depend on the ratio of diffusion to reaction. We illustrate the usefulness of this result with two applications. First, we discuss robustness and locking properties of continuous finite elements with respect to the reaction-diffusion norm. Second, we derive local error functionals that ensure robust performance of adaptive tree approximation in the reaction-diffusion norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Babuška, I., Osborn, J.: Analysis of finite element methods for second order boundary value problems using mesh dependent norms. Numer. Math. 34, 41–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comp. 35, 1039–1062 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29, 1261–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22, 751–756 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binev, P.: Adaptive methods and near-best tree approximation. Oberwolfach Rep. 29, 1669–1673 (2007)

    Google Scholar 

  6. Binev, P.: Tree approximation for hp-adaptivity. IMI Preprint, University of South Carolina (2014, to appear)

  7. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97, 193–217 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. 2, pp. 17–352. North-Holland, Amsterdam (1991)

    Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. Revue Francaise Automat. Informat. Recherche. Operationelle Ser. Rouge Anal. Numér. 9, 77–84 (1975)

    MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal. 41, 1785–1823 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maubach, J.M.: Local bisection refinement for \(n\)-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15, 326–347 (1989)

    Article  MATH  Google Scholar 

  17. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  18. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Naldi, Giovanni, Russo, Giovanni (eds.) Multiscale and Adaptivity: Modeling, Numerics and Applications, pp. 125–225. Springer, Berlin (2012)

    Google Scholar 

  19. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5(1960), 286–292 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Scott, L.R.: A sharp form of Sobolev trace theorems. J. Funct. Anal. 25, 70–80 (1977)

    Article  MATH  Google Scholar 

  21. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77, 227–241 (2008). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  23. Veeser, A.: Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. (2015). doi:10.1007/s10208-015-9262-z

  24. Veeser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47, 2387–2405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Peter Binev for a fruitful discussion on Theorem 8.1 as well as the anonymous referees for their critical remarks that helped us to improve a previous version of this work. Part of F. Tantardini’s work was founded by the DFG under grant AOBJ:612415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Veeser.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tantardini, F., Veeser, A. & Verfürth, R. Robust Localization of the Best Error with Finite Elements in the Reaction-Diffusion Norm. Constr Approx 42, 313–347 (2015). https://doi.org/10.1007/s00365-015-9291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9291-5

Keywords

Mathematics Subject Classification

Navigation