Skip to main content
Log in

Photosynthetic Responses of a Wheat Mutant (Rht-B1c) with Altered DELLA Proteins to Salt Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity increases in the world’s land area and significantly affects the rate of photosynthesis and corresponding plant growth. In this study, the impact of salt stress (200 mM NaCl equivalent to an electrical conductivity of 18.6 mS cm−1) on the photosynthetic apparatus and some growth parameters were investigated in wheat DELLA mutant (Rht-B1c) and wild-type (Rht-B1a) seedlings grown on a half-strength Hoagland solution. Results revealed that salt toxicity was alleviated in the Rht-B1c mutant compared to the Rht-B1a wild type, as manifested by less-reduced leaf pigment content, relative water content, and photochemical activity of photosystem II (PSII) and photosystem I (PSI) after a 9-day salt exposure of plants. Compared to the wild-type wheat, a higher capacity for PSI-dependent cyclic electron flow, preventing the photosynthetic apparatus from oxidative damage, was observed in the mutant plants before and after salt treatment. In addition, an increase of PsaB proteins was detected in the mutant plants after long-term salt stress unlike the wild type. The observed higher oxidation level of P700 (P700+) in the mutant was consistent with higher abundance of PSI-related protein complexes. The data demonstrated that alterations in thylakoid membrane proteins and/or their structural reorganization in wheat DELLA mutant (Rht-B1c) significantly contribute to the alleviation of salt-induced damage of the photosynthetic apparatus. Molecular mechanisms involved in the photosynthetic responses of wheat DELLA mutants to salt stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 4:184–186

    Google Scholar 

  • Achard P, Renou JP, Berthomé R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  PubMed  Google Scholar 

  • Akcin A, Yalcin E (2016) Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Braz J Bot 39:101–106

    Article  Google Scholar 

  • Ali Y, Aslam Z, Ashraf MY, Tahir GR (2004) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. J Environ Sci Technol 1:221–225

    Article  CAS  Google Scholar 

  • Anderson JM, Aro EM (1994) Grana stacking and protection of Photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. Photosynth Res 41:315–326

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Athar HUR, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci 201:428–442

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flaxes J, Pinheiro C (2009) Photosynthesis under drought and salt stress regulation mechanism from whole plant to cell. Ann Bot 103:551–556

    Article  CAS  PubMed  Google Scholar 

  • Chen YE, Zhang CM, Su YQ, Ma J, Zhang ZW, Yuan M, Zhang HY, Yuan S (2017) Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ Exp Bot 135:45–55

    Article  CAS  Google Scholar 

  • Davière J-M, Achard P (2016) A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant 9:10–20

    Article  PubMed  Google Scholar 

  • Dobrikova AG, Yotsova E, Börner A, Apostolova EL (2017) The wheat mutant DELLA-encoding gene (Rht-B1c) affects plant photosynthetic responses to cadmium stress. Plant Physiol Biochem 114:10–18

    Article  CAS  PubMed  Google Scholar 

  • Flintham JE, Gale MD (1982) The Tom Thumb dwarfing gene, Rht3 in wheat, I. Reduced pre-harvest damage to bread making quality. Theor Appl Genet 62:121–126

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Yang HY, Bai JP, Liang XY, Lou Y, Zhang JL, Wang D, Niu SQ, Chen YL (2014) Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front Plant Sci 5:787

    PubMed  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an ‘inhibitor of an inhibitor’ enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MA, Melis A (1992) Organisation and stability of polypeptides associated with the chlorophyll a-b light-harvesting complex of photosystem-II. Plant Cell Physiol 33:627–637

    CAS  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19(6):884–894

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Yang YJ, Zhang ZB (2017) Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves. J Plant Physiol 209:76–83

    Article  CAS  PubMed  Google Scholar 

  • Jia T, Ito H, Tanaka A (2016) Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta 244:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Kalhoro NA, Rajpar I, Kalhoro SA, Ali A, Raza S, Ahmed M, Kalhoro FA, Ramzan M, Wahid F (2016) Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). Am J Plant Sci 7:2257–2271

    Article  CAS  Google Scholar 

  • Khavari-Nejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151–154

    Article  CAS  Google Scholar 

  • Kocheva K, Nenova V, Karceva T, Petrov P, Georgiev GI, Börner A, Landjeva S (2014) Changes in water status, membrane stability and antioxidant capacity of wheat seedlings carrying different Rht-B1 dwarfing alleles under drought stress. J Agron Crop Sci 200:83–91

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lu KX, Yang Y, He Y, Jiang DA (2008) Induction of cyclic electron flow around photosystem I and state transition are correlated with salt tolerance in soybean. Photosynthetica 46:10–16

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Memon SA, Hou X, Wang L (2010) Morphological analysis of salt stress response of pak choi. Electron J Environ Agric Food Chem 9:248–254

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nenova V, Kocheva K, Petrov P, Georgiev G, Karceva T, Börner A, Landjeva S (2014) Wheat Rht-B1 dwarfs exhibit better photosynthetic response to water deficit at seedling stage compared to the wild type. J Agron Crop Sci 200:434–443

    Article  CAS  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qados AMSA (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J Saudi Soc Agric Sci 10:7–15

    Google Scholar 

  • Sairam RK, Rao VK, Srivastava GC (2002) Differential response of wheat genotype to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Saville RJ, Gosman N, Burt CJ, Makepeace J, Steed A, Corbitt M, Chandler E, Brown JKM, Boulton MI, Nicholson P (2012) The ‘Green Revolution’ dwarfing genes play a role in disease resistance in Triticum aestivum and Hordeum vulgare. J Exp Bot 63:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Schöttler MA, Szilvia Z. Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5:188

    PubMed  PubMed Central  Google Scholar 

  • Shu S, Guo SR, Sun J, Yuan LY (2012) Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Plant Physiol 146:285–296

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24:345–351

    Article  CAS  PubMed  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Szopkó D, Darkó É, Molnár I, Kruppa K, Háló B, Vojtkó A, Molnár-Láng M, Dulai S (2016) Photosynthetic responses of a wheat (Asakaze)–barley (Manas) 7H addition line to salt stress. Photosynthetica 54:1–13

    Article  Google Scholar 

  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ Tolerance and Na+ Transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D (2017) Exploiting DELLA signaling in cereals. Trends Plant Sci 22(10):880–893

    Article  Google Scholar 

  • Wen W, Deng Q, Jia H, Wei L, Wei J, Jia H, Wan H, Yang L, Cao W, Ma Z (2013) Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot 64:3299–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Zheng W, Tian Y, Wu D, Zhou DW (2011) Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 49:275–284

    Article  CAS  Google Scholar 

  • Ziaf K, Amjad M, Pervez MA, Iqbal Q, Rajwana IA, Ayyub M (2009) Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). Pak J Bot 41:1797–1809

    CAS  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian Academy of Sciences. Maida Jusovic acknowledged the support of Erasmus Mundus program under the project: “GreenTech: Smart & Green Technologies for Innovative and Sustainable Societies in Western Balkans.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelia G. Dobrikova.

Additional information

Svetlana P. Misheva Previously known as Svetlana P. Landjeva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 27 KB)

Supplementary material 2 (PDF 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jusovic, M., Velitchkova, M.Y., Misheva, S.P. et al. Photosynthetic Responses of a Wheat Mutant (Rht-B1c) with Altered DELLA Proteins to Salt Stress. J Plant Growth Regul 37, 645–656 (2018). https://doi.org/10.1007/s00344-017-9764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9764-9

Keywords

Navigation