Skip to main content
Log in

Detection of interfacial charge transfer in MoS2/PbI2 heterostructures via Kelvin probe force microscope

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, MoS2/PbI2 heterostructures were synthesized via a two-step synthesis method using vapor deposition and direct water bath heating. Raman spectroscopy and Atomic Force Microscope were used to characterize the MoS2/PbI2 heterostructures. The Kelvin probe force microscope was characterized the surface potential of MoS2/PbI2 heterostructures. It has shown that the surface potential has undergone a significant change transfer in the interlayer between MoS2 and PbI2, which means that at the interface charge transfer occurs and the electrons transfer from MoS2 to PbI2. These results provide a theoretical basis for further understanding of the electrical properties of MoS2/PbI2 heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  ADS  Google Scholar 

  2. Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    ADS  Google Scholar 

  4. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  5. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004)

    Article  ADS  Google Scholar 

  6. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  7. Y. Liu, N.O. Weiss, X. Duan, H.C. Cheng, Y. Huang, X. Duan, Van der Waals heterostructures and devices. Nature Reviews Materials. 1, 16042 (2016)

    Article  ADS  Google Scholar 

  8. C. Wang, H. Fan, X. Ren, J. Fang, Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures. Appl. Phys. A 124, 99 (2018)

    Article  ADS  Google Scholar 

  9. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  10. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852–3858 (2016)

    Article  Google Scholar 

  11. S. Wang, X. Wang, J.H. Warner, All chemical vapor deposition growth of MoS2:h-BN Vertical van der Waals heterostructures. ACS Nano 9, 5246–5254 (2015)

    Article  Google Scholar 

  12. X. Zhang, F. Meng, J.R. Christianson, C. Arroyo Torres, M.A. Lukowski, D. Liang, J.R. Schmidt, S. Jin, Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14, 3047–3054 (2014)

    Article  ADS  Google Scholar 

  13. S. Kim, A. Konar, W. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. Yoo, J. Choi, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nature Communications. 3, 1011 (2012)

    Article  ADS  Google Scholar 

  14. Y. Wang, C. Cong, C. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9, 2857–2861 (2013)

    Article  Google Scholar 

  15. R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, Ph Avouris, M. Steiner, Electroluminescence in single layer MoS2. Nano Lett. 13, 1416–1421 (2013)

    Article  ADS  Google Scholar 

  16. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  17. M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.C. Cheng, D. Tománek, Z. Zhou, Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7, 4449–4458 (2013)

    Article  Google Scholar 

  18. K. Kośmider, J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B. 87, 216 (2013)

    Article  Google Scholar 

  19. Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014)

    Article  Google Scholar 

  20. B. Peng, G. Yu, X. Liu, B. Liu, X. Liang, L. Bi, L. Deng, T. Chien Sum, K.P. Loh, Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3, 025020 (2016)

    Article  Google Scholar 

  21. M. Zhong, L. Huang, H.X. Deng, X. Wang, B. Li, Z. Wei, J. Li, Flexible photodetectors based on phase dependent PbI2 single crystals. J Mater Chem C. 4, 6492–6499 (2016)

    Article  Google Scholar 

  22. S. Ito, S. Tanaka, H. Nishino, Lead-halide perovskite solar cells by CH3NH3I dripping on PbI2-CH3NH3I-DMSO precursor layer for planar and porous structures using CuSCN hole-transporting material. J Phys Chem Lett. 6, 881–886 (2015)

    Article  Google Scholar 

  23. H. Yan, B. An, Z. Fan, X. Zhu, X. Lin, Z. Jin, G. Ma, Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Appl. Phys. A 122, 414 (2016)

    Article  ADS  Google Scholar 

  24. Y. Ma, X. Zhao, T. Wang, W. Li, X. Wang, S. Chang, Y. Li, M. Zhao, X. Dai, Band structure engineering in a MoS2/PbI2 van der Waals heterostructure via an external electric field. Phys Chem Chem Phys. 18, 28466–28473 (2016)

    Article  Google Scholar 

  25. Y. Sun, Z. Huang, Z. Zhou, J. Wu, L. Zhou, Y. Cheng, J. Liu, M. Yu, P. Yu,W. Zhu, Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. arXiv preprint arXiv:1810.08927, (2018)

  26. H. Huang, H. Wang, J. Zhang, D. Yan, Surface potential images of polycrystalline organic semiconductors obtained by kelvin probe force microscopy. Appl. Phys. A 95, 125–130 (2009)

    Article  ADS  Google Scholar 

  27. T. Filleter, K.V. Emtsev, T. Seyller, R. Bennewitz, Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93, 1191 (2008)

    Article  Google Scholar 

  28. I. Sharma, B. Mehta, Enhanced charge separation at 2D MoS2/ZnS heterojunction: KPFM based study of interface photovoltage. Appl. Phys. Lett. 110, 061602 (2017)

    Article  ADS  Google Scholar 

  29. M. Zhong, S. Zhang, L. Huang, J. You, Z. Wei, X. Liu, J. Li, Large-scale 2D PbI2 monolayers: experimental realization and their indirect band-gap related properties. Nanoscale. 9, 3736–3741 (2017)

    Article  Google Scholar 

  30. M.W. Lin, I.I. Kravchenko, J. Fowlkes, X. Li, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, K. Xiao, Thickness-dependent charge transport in few-layer MoSâ, field-effect transistors. Nanotechnology. 27, 165203 (2016)

    Article  ADS  Google Scholar 

  31. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T. Wang, C.S. Chang, L.J. Li, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012)

    Article  Google Scholar 

  32. S. Choi, Z. Shaolin, W. Yang, Layer-number-dependent work function of MoS2 nanoflakes. J Korean Phys Soc. 64, 1550–1555 (2014)

    Article  ADS  Google Scholar 

  33. J. Li, X. Qi, G. Hao, L. Ren, J. Zhong, In-situ investigation of graphene oxide under UV irradiation: Evolution of work function. AIP Adv. 5, 067154 (2015)

    Article  ADS  Google Scholar 

  34. A.S. Toulouse, B.P. Isaacoff, G. Shi, M. Matuchová, E. Kioupakis, R. Merlin, Frenkel-like Wannier-Mott excitons in few-layer PbI2. Phys. Rev. B. 91, 165308 (2015)

    Article  ADS  Google Scholar 

  35. T. Cheiwchanchamnangij, W.R.L. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B. 85, 205302 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grants from National Natural Science Foundation of China (No. 11874316 and 11474244), the National Basic Research Program of China (2015CB921103), the Innovation Research Team in University (IRT 17R91), and Science and Technology Program of Xiangtan (No. CXY-ZD20172002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Xiao, X., Liu, S. et al. Detection of interfacial charge transfer in MoS2/PbI2 heterostructures via Kelvin probe force microscope. Appl. Phys. A 125, 287 (2019). https://doi.org/10.1007/s00339-019-2578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2578-9

Navigation