Skip to main content
Log in

Camphor soot: a tunable light emitter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The work in this paper is the first report on the green synthesis of the blue light emitter from waxy, flammable solid collected from Cinnamomum camphora by controlled combustion for photonic applications. Analysis with field emission scanning electron microscope and high-resolution transmission electron microscope provides the morphology, whereas the thermogravimetric analysis gives the thermal stability of the soot. The optical and structural characterizations are done by recording UV–Visible, Photoluminescent, and Raman Spectrum. The CIE plot and the power spectrum of the sample show a blue emission at an excitation of 350 nm at room temperature with a quantum yield of 46.15%. The dependence of luminescent behavior on temperature and excitation wavelength reveals that the material is a tunable blue emitter. This green synthesis of the blue light emitter is highly significant, when the world is in search of a simple, phosphor-free, non-toxic, cost-effective material with good quantum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Science 308(5726), 1274–1278 (2005)

    Article  ADS  Google Scholar 

  2. L.-H. Mao et al., Ind. Eng. Chem. Res 53, 6417–6425 (2014)

    Article  Google Scholar 

  3. A.K.V. Singh, U. Mishra, Scientific Reports 5, 11118 (2015)

    Article  ADS  Google Scholar 

  4. X.T. Feng et al., Appl. Phys. Lett 107, 213102 (2015)

    Article  ADS  Google Scholar 

  5. G.M. Farinola, R. Ragni, Chem. Soc. Rev 40, 3467–3482 (2011)

    Article  Google Scholar 

  6. The Royal Swedish Academy of Sciences. Efficient blue light-emitting diodes leading to bright and energy-saving white light sources. Kungl. Ventenskaps Akademien. (2014)

  7. C.-Y. Sun et al., Nat. Commun 4, 2717 (2013)

    Google Scholar 

  8. H. Ulla et al., International Conference on Optical Engineering (ICOE), IEEE, (2012)

  9. K. Jiang et al., Angew. Chem. Int. Ed 54, 1–5 (2015)

    Article  Google Scholar 

  10. X. Zhang et al., ACS NANO 7(12), 11234–11241 (2013)

    Article  Google Scholar 

  11. J. Liu et al., J. Mater. Chem. 18(14), 1659–1666 (2008)

    Article  Google Scholar 

  12. R. Ma et al., IMID Dig 8, 60 (2011)

    Google Scholar 

  13. CIE Commission internationale de l’Eclairage proceedings. Cambridge University Press (1932)

  14. S. Thomas, G. John, Trans. Opt. Soc. 33(3), 73–134 (1931–32)

  15. “IEC 61966-2-1:1999"IEC Webstore. International Electrotechnical Commission, Retrieved 3 March 2017

  16. Y.R. Sun et al., Nature 440, 908 (2006)

    Article  ADS  Google Scholar 

  17. M.F. Wu et al., Adv. Funct. Mater 17, 1887 (2007)

    Article  Google Scholar 

  18. M.S. Swapna et al., JOJ Material Sci 1(4), 555566 (2017)

    Google Scholar 

  19. J.-Y. Li, et al., Langmuir 33, 1043–1050 (2017)

    Article  Google Scholar 

  20. R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Science 283, 663 (1999)

    Article  ADS  Google Scholar 

  21. Q.Y. Zhang, C.H. Yang, Z.H. Jiang, X.H. Ji, Appl. Phys. Lett 90, 061914 (2007)

    Article  ADS  Google Scholar 

  22. Operation Manual. http://www.HORIBA.com/scientific

  23. D.-C. Yu, Light: Sci. Appl. 4, e344 (2015)

    Article  Google Scholar 

  24. A.C. Ferrari, Robertson, J. Phys. Rev. B 61, 14095–14107 (2000)

    Article  ADS  Google Scholar 

  25. C. Thomsen, C. Reich, Phys. Rev. Lett 85, 5214 (2000)

    Article  ADS  Google Scholar 

  26. L.S.K. Pang, J.D. Saxby, S.P. Chatfield, J. Phys. Chem 97, 6941–6942 (1993)

    Article  Google Scholar 

  27. O.M. Dunens, K.J. MacKenzie, A.T. Harris, Environ. Sci. Technol 43, 7889–7894 (2009)

    Article  ADS  Google Scholar 

  28. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier. Carbon 49, 2581 – 2602 (2011)

    Article  Google Scholar 

  29. M. Kumar, Y. Ando, J. Phys.: Conf. Ser. 61, 643–646 (2007)

    Google Scholar 

  30. G. Oza et al., Sci. Rep. 6, 21286

  31. B.N. Sahoo, B. Kandasubramanian, RSC Adv 4, 11331 (2017)

    Article  Google Scholar 

  32. M. Kumar, Y. Ando, Diam. Relat. Mater. 12, 1845–1850 (2003)

    Article  ADS  Google Scholar 

  33. T. Uchida et al., Jpn. J. Appl. Phys 45, 8027–8029 (2006)

    Article  ADS  Google Scholar 

  34. M.S. Swapna, S. Sankararaman, J Mater Sci Nanotechnol 5(1), 104 (2017)

    Google Scholar 

  35. Z.-H. Wen, X.-B. Yin, RSC Advs 6, 27829–27835 (2016)

    Article  Google Scholar 

  36. N. Anu Mohan, B. Manoj, Int. J. Electrochem. Sci 7, 9537–9549 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Saritha Devi, H.V. & Sankararaman, S. Camphor soot: a tunable light emitter. Appl. Phys. A 124, 50 (2018). https://doi.org/10.1007/s00339-017-1445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1445-9

Navigation