Skip to main content

Advertisement

Log in

Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for “self-adaptive” systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Abbreviations

x :

Hydrogenation fraction (0 < x < 1)

\(\frac{{{\text{d}}x}}{{{\text{d}}t}}\) :

Hydrogenation velocity (s−1)

C p :

Specific heat (J/kg/K)

ε :

Porosity

E a :

Activation energy (J/mol)

ΔH :

Absorption enthalpy (J/mol)

K :

Permeability (m2)

λ :

Effective thermal conductivity (W/m K)

L th :

Characteristic length for heat diffusion (m)

L gaz :

Characteristic length for gas diffusion (m)

µ :

Dynamic viscosity of hydrogen (Pa s)

M :

Molecular weight of hydrogen (kg/mol)

P :

Hydrogen pressure (Pa)

P in :

Gas inlet pressure (Pa)

ρ :

Density (kg/m3)

R :

Universal gas constant = 8.314 J/mol K

S :

Source term (W/m3)

T :

Temperature (K)

T m :

Melting temperature of the PCM (K)

V :

Gas velocity (m/s)

wt:

Maximum hydrogen fraction inside the hydride (%)

m :

Metal hydride (except for T m)

g :

Gas

eq:

Equilibrium

References

  1. J.C. Crivello, B. Dam, R.V. Denys, M. Dornheim, D.M. Grant, J. Huot, et al., Review of magnesium hydride based materials: development and optimisation. Appl. Phys. A 122(2), 122:97 (2016). doi:10.1007/s00339-016-9602-0

  2. J.C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, et al., Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 122, 85 (2016). doi:10.1007/s00339-016-9601-1

  3. J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293–295, 495–500 (1999). doi:10.1016/S0925-8388(99)00474-0

    Article  Google Scholar 

  4. M. Jehan, D. Fruchart, McPhy-energy’s proposal for solid state hydrogen storage materials and systems. J. Alloys Compd. 580(Supplement 1), S343–S348 (2013). doi:10.1016/j.jallcom.2013.03.266

    Article  Google Scholar 

  5. P. de Rango, A. Chaise, J. Charbonnier, D. Fruchart, M. Jehan, P. Marty et al., Nanostructured magnesium hydride for pilot tank development. J. Alloys Compd. 446–447, 52–57 (2007). doi:10.1016/j.jallcom.2007.01.108

    Article  Google Scholar 

  6. M. Verga, F. Armanasco, C. Guardamagna, C. Valli, A. Bianchin, F. Agresti et al., Scaling up effects of Mg hydride in a temperature and pressure-controlled hydrogen storage device. Int. J. Hydrogen Energy 34, 4602–4610 (2009). doi:10.1016/j.ijhydene.2008.08.043

    Article  Google Scholar 

  7. A. Chaise, P. de Rango, P. Marty, D. Fruchart, Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrogen Energy 35, 6311–6322 (2010). doi:10.1016/j.ijhydene.2010.03.057

    Article  Google Scholar 

  8. S. Garrier, A. Chaise, P. de Rango, P. Marty, B. Delhomme, D. Fruchart et al., MgH2 intermediate scale tank tests under various experimental conditions. Int. J. Hydrogen Energy 36, 9719–9726 (2011). doi:10.1016/j.ijhydene.2011.05.017

    Article  Google Scholar 

  9. B. Bogdanović, A. Ritter, B. Spliethoff, K. Straβburger, A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system. Int. J. Hydrogen Energy 20, 811–822 (1995). doi:10.1016/0360-3199(95)00012-3

    Article  Google Scholar 

  10. B. Delhomme, P. de Rango, P. Marty, M. Bacia, B. Zawilski, C. Raufast et al., Large scale magnesium hydride tank coupled with an external heat source. Int. J. Hydrogen Energy 37, 9103–9111 (2012). doi:10.1016/j.ijhydene.2012.03.018

    Article  Google Scholar 

  11. A. Chaise, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, R. Olivès et al., Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite. Int. J. Hydrogen Energy 34, 8589–8596 (2009). doi:10.1016/j.ijhydene.2009.07.112

    Article  Google Scholar 

  12. S. Nachev, P. de Rango, D. Fruchart, N. Skryabina, P. Marty, Correlation between microstructural and mechanical behavior of nanostructured MgH2 upon hydrogen cycling, J. Alloys Compd. (n.d.). doi:10.1016/j.jallcom.2014.12.088

  13. G.A. Lozano, J.M. Bellosta von Colbe, T. Klassen, M. Dornheim, Transport phenomena versus intrinsic kinetics: hydrogen sorption limiting sub-process in metal hydride beds. Int. J. Hydrogen Energy 39, 18952–18957 (2014). doi:10.1016/j.ijhydene.2014.09.035

    Article  Google Scholar 

  14. S. Nachev, P. de Rango, B. Delhomme, D. Plante, B. Zawilski, F. Longa et al., In situ dilatometry measurements of MgH2 compacted disks. J. Alloys Compd. 580(Supplement 1), S183–S186 (2013). doi:10.1016/j.jallcom.2013.03.098

    Article  Google Scholar 

  15. S. Garrier, B. Delhomme, P. de Rango, P. Marty, D. Fruchart, S. Miraglia, A new MgH2 tank concept using a phase-change material to store the heat of reaction. Int. J. Hydrogen Energy 38, 9766–9771 (2013). doi:10.1016/j.ijhydene.2013.05.026

    Article  Google Scholar 

  16. P.R. Wilson, R.C. Bowman Jr, J.L. Mora, J.W. Reiter, Operation of a PEM fuel cell with LaNi4.8Sn0.2 hydride beds. J. Alloys Compd. 446–447, 676–680 (2007). doi:10.1016/j.jallcom.2007.02.162

    Article  Google Scholar 

  17. T. Førde, J. Eriksen, A.G. Pettersen, P.J.S. Vie, Ø. Ulleberg, Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. Int. J. Hydrogen Energy 34, 6730–6739 (2009). doi:10.1016/j.ijhydene.2009.05.146

    Article  Google Scholar 

  18. R. Urbanczyk, S. Peil, D. Bathen, C. Heßke, J. Burfeind, K. Hauschild et al., HT-PEM fuel cell system with integrated complex metal hydride storage tank. Fuel Cells 11, 911–920 (2011). doi:10.1002/fuce.201100012

    Article  Google Scholar 

  19. P. Rizzi, E. Pinatel, C. Luetto, P. Florian, A. Graizzaro, S. Gagliano et al., Integration of a PEM fuel cell with a metal hydride tank for stationary applications. J. Alloys Compd. 645(Supplement 1), S338–S342 (2015). doi:10.1016/j.jallcom.2014.12.145

    Article  Google Scholar 

  20. B. Delhomme, A. Lanzini, G.A. Ortigoza-Villalba, S. Nachev, P. de Rango, M. Santarelli et al., Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. Int. J. Hydrogen Energy 38, 4740–4747 (2013). doi:10.1016/j.ijhydene.2013.01.140

    Article  Google Scholar 

  21. P. De Rango, P. Marty, B. Delhomme, R. Moracchioli, S. Nachev, System for the reversible storage of hydrogen in a material in the form of a metal hydride comprising a plurality of heat pipes in thermal contact with the material, WO2013190024 (A2), 2013. http://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20131227&DB=EPODOC&locale=fr_EP&CC=WO&NR=2013190024A2&KC=A2&ND=4. Accessed 17 Sept 2015

  22. G.A. Lozano, C.N. Ranong, J.M. Bellosta von Colbe, R. Bormann, J. Hapke, G. Fieg et al., Optimization of hydrogen storage tubular tanks based on light weight hydrides. Int. J. Hydrogen Energy 37, 2825–2834 (2012). doi:10.1016/j.ijhydene.2011.03.043

    Article  Google Scholar 

  23. A. Freni, F. Cipitì, G. Cacciola, Finite element-based simulation of a metal hydride-based hydrogen storage tank. Int. J. Hydrogen Energy 34, 8574–8582 (2009). doi:10.1016/j.ijhydene.2009.07.118

    Article  Google Scholar 

  24. C.A. Krokos, D. Nikolic, E.S. Kikkinides, M.C. Georgiadis, A.K. Stubos, Modeling and optimization of multi-tubular metal hydride beds for efficient hydrogen storage. Int. J. Hydrogen Energy 34, 9128–9140 (2009). doi:10.1016/j.ijhydene.2009.09.021

    Article  Google Scholar 

  25. J. Ma, Y. Wang, S. Shi, F. Yang, Z. Bao, Z. Zhang, Optimization of heat transfer device and analysis of heat & mass transfer on the finned multi-tubular metal hydride tank. Int. J. Hydrogen Energy 39, 13583–13595 (2014). doi:10.1016/j.ijhydene.2014.03.016

    Article  Google Scholar 

  26. Z. Wu, F. Yang, Z. Zhang, Z. Bao, Magnesium based metal hydride reactor incorporating helical coil heat exchanger: simulation study and optimal design. Appl. Energy 130, 712–722 (2014). doi:10.1016/j.apenergy.2013.12.071

    Article  Google Scholar 

  27. Z. Bao, Performance investigation and optimization of metal hydride reactors for high temperature thermochemical heat storage. Int. J. Hydrogen Energy 40, 5664–5676 (2015). doi:10.1016/j.ijhydene.2015.02.123

    Article  Google Scholar 

  28. Z. Bao, F. Yang, Z. Wu, X. Cao, Z. Zhang, Simulation studies on heat and mass transfer in high-temperature magnesium hydride reactors. Appl. Energy 112, 1181–1189 (2013). doi:10.1016/j.apenergy.2013.04.053

    Article  Google Scholar 

  29. D. Shen, C.Y. Zhao, Thermal analysis of exothermic process in a magnesium hydride reactor with porous metals. Chem. Eng. Sci. 98, 273–281 (2013). doi:10.1016/j.ces.2013.05.041

    Article  Google Scholar 

  30. A. Jemni, S.B. Nasrallah, Study of a two dimensional heat and mass transfer during absorption in a metal hydrogen reactor. Int. J. Hydrogen Energy 20(1995), 43–52 (1995). doi:10.1016/0360-3199(93)E0007-8

    Article  Google Scholar 

  31. A. Chaise, P. Marty, P. de Rango, D. Fruchart, A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor. Int. J. Heat Mass Transf. 52, 4564–4572 (2009). doi:10.1016/j.ijheatmasstransfer.2009.03.052

    Article  MATH  Google Scholar 

  32. P. Marty, P. de Rango, B. Delhomme, S. Garrier, Various tools for optimizing large scale magnesium hydride storage. J. Alloys Compd. 580(Supplement 1), S324–S328 (2013). doi:10.1016/j.jallcom.2013.02.169

    Article  Google Scholar 

  33. S. Mellouli, N. Ben Khedher, F. Askri, A. Jemni, S. Ben Nasrallah, Numerical analysis of metal hydride tank with phase change material, Appl. Therm. Eng. (n.d.). doi:10.1016/j.applthermaleng.2015.07.022

Download references

Acknowledgments

The authors gratefully acknowledge partial funding by the Carnot Institute “Energies du Futur” and the European Commission DG Research (SES6-2006-518271/NESSHY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. de Rango.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Rango, P., Marty, P. & Fruchart, D. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration. Appl. Phys. A 122, 126 (2016). https://doi.org/10.1007/s00339-016-9646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9646-1

Keywords

Navigation