Skip to main content
Log in

Black titania: effect of hydrogenation on structural and thermal stability of nanotitania

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the effect of hydrogenation on sol–gel-derived, anatase-phase TiO2 nanoparticles. The structural analysis of white nanotitania (W-TiO2) and hydrogenated black titania (B-TiO2) has been carried out by X-ray diffraction (XRD) studies, which confirms anatase phase for both the cases, but with weak diffraction signals in the latter system. Upon hydrogenation, nanotitania system is believed to acquire a disordered phase in the form of a thin amorphous layer surrounding the nanoparticles, which can be realized through transmission electron microscopy analyses. As compared to W-TiO2 (~3.15 eV), the optical band gap of B-TiO2 is substantially reduced with respective band gap values of ~1.99 and 1.53 eV for 0.5 and 1 % H2 inclusion cases. Moreover, thermogravimetric analysis reveals high temperature thermal stability of B-TiO2 system, especially in the range of 350–600 °C. Exploiting thermal, optical and electronic properties of hydrogenated nanotitania could find scope in infrared optics, hydrogen storage and suitable photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Reijnders, Polym. Degrad. Stab. 94, 873 (2009)

    Article  Google Scholar 

  2. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)

    Article  ADS  Google Scholar 

  3. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Article  Google Scholar 

  4. X. Chen, C. Burda, J. Am. Chem. Soc. 130, 5018 (2008)

    Article  Google Scholar 

  5. T. Xia, X. Chen, J. Mater. Chem. A 1, 2983 (2013)

    Article  Google Scholar 

  6. X. Chen, L. Liu, Z. Liu, M.A. Marcus, W.C. Wang, N.A. Oyler, M.E. Grass, B. Mao, P.A. Glans, P.Y. Yu, J. Guo, S.S. Mao, Sci. Rep. 3, 1 (2013)

    Google Scholar 

  7. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)

    Article  ADS  Google Scholar 

  8. P. Kajitvichyanukul, J. Ananpattarachai, S. Pongpom, Sci. Tech. Adv. Mater. 6, 352 (2005)

    Article  Google Scholar 

  9. Y.H. Hu, Angew. Chem. Int. Ed. 51, 12410 (2012)

    Article  Google Scholar 

  10. W.E. Stallings, H.H. Lamb, Langmuir 19, 2989 (2003)

    Article  Google Scholar 

  11. R. Khanam, D. Mohanta, Physica E 49, 39 (2013)

    Article  ADS  Google Scholar 

  12. S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant, B. Inceesungvorn, Mater. Lett. 105, 76 (2013)

    Article  Google Scholar 

  13. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  Google Scholar 

  14. S. Qiu, S.J. Kalita, Mater. Sci. Eng. A 327, 435 (2006)

    Google Scholar 

  15. G. Li, J. Boerio-Goates, B.F. Woodfield, L. Li, Appl. Phys. Lett. 85, 2059 (2004)

    Article  ADS  Google Scholar 

  16. B. Santara, P.K. Giri, K. Imakita, M. Fujii, J. Phys. D Appl. Phys. 47, 215302 (2014)

    Article  ADS  Google Scholar 

  17. K.W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 3rd edn. (Wiley, New York, 2008), p. 26

    Google Scholar 

  18. C. Sun, Y. Jia, X.H. Yang, H.G. Yang, X. Yao, G.Q.(Max) Lu, A. Selloni, S.C. Smith, J. Phys. Chem. C 115, 25590 (2011)

    Article  Google Scholar 

  19. J.J. Xu, H.Y. Cheung, S.Q. Shi, J. Alloys Comp. 436, 82 (2007)

    Article  Google Scholar 

  20. http://imagej.nih.gov/ij/.

  21. D.A. Kumar, J.A. Xavier, J.M. Shyla, F.P. Xavier, Mater. Sci. 48, 3700 (2013)

    Article  ADS  Google Scholar 

  22. V. Dimitrov, S. SakkaJ, Appl. Phys. 79, 1736 (1996)

    Article  Google Scholar 

  23. M. Hatami, K.V. Rao, M. Ahmadipour, V. Rajendar, Adv. Sci. Eng. Med. 5, 1039 (2013)

    Article  Google Scholar 

  24. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7, 4871 (2012)

    Google Scholar 

  25. N. Wang, H. Lin, J. Li, L. Zhang, C. Lin, X. Li, J. Am. Ceram. Soc. 89, 3564 (2006)

    Article  Google Scholar 

  26. C. Lu, Z. Cui, C. Guan, J. Guan, B. Yang, J. Shen, Macromol. Mater. Eng. 288, 717 (2003)

    Article  Google Scholar 

  27. J. Wang, W. Sun, Z. Zhang, Z. Jiang, X. Wang, R. Xu, R. Li, X. Zhang, J. Colloid. Interface Sci. 320, 202 (2008)

    Article  Google Scholar 

  28. S. Mahshid, M.S. Ghamsari, M. Askari, N. Afshar, S. Lahuti, Semicond. Phys. Quantum Electron. Optoelectron. 9, 65 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge IUAC, New Delhi, for the financial support (Project Nos.: UFR-50307/2011 and 56322/2014). The authors thank SAIC, TU, for extending TEM imaging facility. We also thank Ms. Dimpi Kachari and Mr. Rerewa Narzary for their needful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dambarudhar Mohanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanam, R., Taparia, D., Mondal, B. et al. Black titania: effect of hydrogenation on structural and thermal stability of nanotitania. Appl. Phys. A 122, 92 (2016). https://doi.org/10.1007/s00339-016-9618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9618-5

Keywords

Navigation