Skip to main content

Advertisement

Log in

Diet, isotopic niche, and spatial distribution of the white-headed petrel (Pterodroma lessonii) at Kerguelen Islands

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The subantarctic white-headed petrel is unique amongst Procellariidae by its biennial breeding frequency. Its food and feeding ecology is poorly known with limited available bio-logging data and no dietary and isotopic information. Our goal was to detail its prey species and isotopic niche at Kerguelen Islands, which is the most important breeding site in the Indian Ocean. Analysis of stomach contents (n = 56) indicated chicks were fed on fish (68% by mass) and secondarily on cephalopods (26%), whilst crustaceans were minor dietary components. Mesopelagic fishes were the main prey, with myctophids and melamphaids being the most important fish family in terms of both abundance (50% and 15% of the fish, respectively) and diversity (10 and three species). Prey distribution indicated that petrels foraged primarily in subantarctic waters and secondarily further south to feed their chicks, which is corroborated by the lower blood δ13C values of fledglings (n = 10) than incubating adults (n = 9). Body feather δ13C values (n = 45) indicate that adult white-headed petrels moulted over different latitudinal habitats, from the subtropics to Antarctica where δ15N values showed they fed on low trophic-level prey (most likely Antarctic krill). Indeed, three geolocator-tracked birds ranged widely, from the mid-Atlantic (18° W) to the eastern Indian Ocean (110° E) and from the warmer Subtropical Zone (19% of the locations), across the Subantarctic Zone (58%) to the colder Antarctic Zone (23%). Neither fishery-related items nor plastic debris were found in chick food samples, thus indicating no significant interactions with human activities, which is a key positive issue for the conservation of white-headed petrels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset generated during the current study is available from the corresponding author on reasonable request.

References

  • Afanasyev V (2004) A miniature daylight level and activity data recorder for tracking animals over long periods. Mem Natl Inst Polar Res 58:227–233

    Google Scholar 

  • Barré H (1976) Pterodroma lessonii (Garnot) a l’Ile de la Possession (Iles Crozet). Com Natl Fr Rech Antarct 40:61–76

    Google Scholar 

  • Basher Z, Costello MJ (2014) Shrimps (Crustacea: Decapoda). In: de Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C, van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the Southern Ocean. SCAR, Cambridge, pp 190–194

    Google Scholar 

  • Battam H, Richardson M, Watson AWT, Buttemer WA (2010) Chemical composition and tissue energy density of the cuttlefish (Sepia apama) and its assimilation efficiency by Diomedea albatrosses. J Comp Physiol B 180:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458

    Article  CAS  PubMed  Google Scholar 

  • Belkin IM, Gordon AL (1996) Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res 101:3675–3696

    Article  Google Scholar 

  • Blévin P, Carravieri A, Jaeger A, Chastel O, Bustamante P, Cherel Y (2013) Wide range of mercury contamination in chicks of Southern Ocean seabirds. PLoS ONE 8:e54508

    Article  PubMed  PubMed Central  Google Scholar 

  • Boltovskoy D (1999) South Atlantic zooplankton. Backhuys Publishers, Leiden

    Google Scholar 

  • Brooke M (2004) Albatrosses and petrels across the World. Oxford University Press, Oxford

    Google Scholar 

  • Brothers N, Duckworth AR, Safina C, Gilman EL (2010) Seabird bycatch in pelagic longline fisheries is grossly underestimated when using only haul data. PLoS ONE 5:e12491

    Article  PubMed  PubMed Central  Google Scholar 

  • Bugoni L, Naves LC, Furness RW (2015) Moult of three Tristan da Cunha species sampled at sea. Antarct Sci 27:240–251

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carravieri A, Bustamante P, Churlaud C, Fromant A, Cherel Y (2014) Moulting patterns drive within-individual variations of stable isotopes and mercury in seabird body feathers: implications for monitoring of the marine environment. Mar Biol 161:963–968

    Article  CAS  Google Scholar 

  • Chastel O (1995) Influence of reproductive success on breeding frequency in four southern petrels. Ibis 137:360–363

    Article  Google Scholar 

  • Cherel Y (2008) Isotopic niches of emperor and Adélie penguins in Adélie Land, Antarctica. Mar Biol 154:813–821

    Article  Google Scholar 

  • Cherel Y (2020) A review of Southern Ocean squids using nets and beaks. Mar Biodivers 50:98

    Article  Google Scholar 

  • Cherel Y, Bocher P (2022) Diet of the soft-plumaged petrel (Pterodroma mollis) at Kerguelen Islands and a review of the food of gadfly petrels (Pterodroma spp.) worldwide. Mar Biol 169:31

    Article  Google Scholar 

  • Cherel Y, Bocher P, de Broyer C, Hobson KA (2002a) Food and feeding ecology of the sympatric thin-billed Pachyptila belcheri and Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:263–281

    Article  Google Scholar 

  • Cherel Y, Bocher P, Trouvé C, Weimerskirch H (2002b) Diet and feeding ecology of blue petrels Halobaena caerulea at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:283–299

    Article  Google Scholar 

  • Cherel Y, Fontaine C, Richard P, Labat JP (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55:324–332

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287

    Article  CAS  Google Scholar 

  • Cherel Y, Jaquemet S, Maglio A, Jaeger A (2014) Differences in δ13C and δ15N values between feathers and blood of seabird chicks: implications for non-invasive isotopic investigations. Mar Biol 161:229–237

    Article  Google Scholar 

  • Cherel Y, Klages N (1998) A review of the food of albatrosses. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty and Sons, Chipping Norton, pp 113–136

    Google Scholar 

  • Cherel Y, Le Corre M, Jaquemet S, Ménard F, Richard P, Weimerskirch H (2008) Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar Ecol Prog Ser 366:281–291

    Article  CAS  Google Scholar 

  • Cherel Y, Quillfeldt P, Delord K, Weimerskirch H (2016) Combination of at-sea activity, geolocation and feather stable isotopes documents where and when seabirds molt. Front Ecol Evol 4:3

    Article  Google Scholar 

  • Cherel Y, Weimerskirch H, Duhamel G (1996) Interactions between longline vessels and seabirds in Kerguelen waters and a method to reduce seabird mortality. Biol Conserv 75:63–70

    Article  Google Scholar 

  • Cherel Y, Weimerskirch H, Trouvé C (2000) Food and feeding ecology of the neritic-slope forager black-browed albatross and its relationships with commercial fisheries in Kerguelen waters. Mar Ecol Prog Ser 207:183–199

    Article  Google Scholar 

  • Connan M, Cherel Y, Mayzaud P (2007) Lipids from stomach oil of procellariiform seabirds document the importance of myctophid fish in the Southern Ocean. Limnol Oceanogr 52:2445–2455

    Article  CAS  Google Scholar 

  • Cuzin-Roudy J, Irisson JO, Penot F, Kawaguchi S, Vallet C (2014) Southern Ocean euphausiids. In: de Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C, van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, pp 309–320

    Google Scholar 

  • Delord K, Gasco N, Weimerskirch H, Barbraud C (2005) Seabird mortality in the Patagonian toothfish longline fishery around Crozet and Kerguelen Islands, 2001–2003. CCAMLR Sci 12:53–80

    Google Scholar 

  • Dias MP, Martin R, Pearmain EJ, Burfield IJ, Small C, Phillips RA, Yates O, Lascelles B, Borboroglu PG, Croxall JP (2019) Threat to seabirds: a global assessment. Biol Conserv 237:525–537

    Article  Google Scholar 

  • Douma JC, Weedon JT (2019) Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol Evol 10:1412–1430

    Article  Google Scholar 

  • Duhamel G, Gasco P, Davaine P (2005) Poissons des Iles Kerguelen et Crozet. Guide régional de l’océan Austral. MNHN, Paris

    Google Scholar 

  • Fox JW (2009) Geolocator Manual v7 (09/09). British Antarctic Survey, Natural Environment Research Council, Cambridge

    Google Scholar 

  • Harrison P, Perrow M, Larsson H (2021) Seabirds. The new identification guide. Lynx Edicions, Barcelona

  • Hastie T (2015) Package ‘gam’

  • Henschke N, Cherel Y, Cotté C, Espinasse B, Hunt BPV, Pakhomov EA (2021) Size and stage specific patterns in Salpa thompsoni vertical migration. J Mar Syst 222:103587

    Article  Google Scholar 

  • Henschke N, Pakhomov EA, Groeneveld J, Meyer B (2018) Modelling the life cycle of Salpa thompsoni. Ecol Model 387:17–26

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for non destructive sampling in avian dietary studies. Auk 110:638–641

    Article  Google Scholar 

  • Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:1720–1723

    Article  CAS  Google Scholar 

  • Imber MJ (1983) The lesser petrels of Antipodes Islands, with notes from Prince Edward and Gough Islands. Notornis 30:283–298

    Google Scholar 

  • Jaeger A, Blanchard P, Richard P, Cherel Y (2009) Using carbon and nitrogen isotopic values of body feathers to infer inter- and intra-individual variations of seabird feeding ecology during moult. Mar Biol 156:1233–1240

    Article  Google Scholar 

  • Jaeger A, Connan M, Richard P, Cherel Y (2010a) Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar Ecol Prog Ser 401:269–277

    Article  CAS  Google Scholar 

  • Jaeger A, Jaquemet S, Phillips RA, Wanless RM, Richard P, Cherel Y (2013) Stable isotopes document inter- and intra-specific variation in feeding ecology of nine large southern Procellariiformes. Mar Ecol Prog Ser 490:255–266

    Article  CAS  Google Scholar 

  • Jaeger A, Lecomte VJ, Weimerskirch H, Richard P, Cherel Y (2010b) Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators’ foraging areas in the Southern Ocean. Rapid Commun Mass Spectrom 24:3456–3460

    Article  CAS  PubMed  Google Scholar 

  • Jouventin P, Mougin JL, Stahl JC, Weimerskirch H (1985) Comparative biology of the burrowing petrels of the Crozet Islands. Notornis 32:157–220

    Google Scholar 

  • Jouventin P, Ridoux V, Stahl JC, Weimerskirch H (1988) La ségrégation écologique des pétrels des Iles Crozet. Rev Ecol (terre Vie) 43:357–366

    Google Scholar 

  • Marchant S, Higgins PJ (1990) Handbook of Australian, New Zealand and Antarctic Birds, vol 1. Oxford University Press, Melbourne

    Google Scholar 

  • Mills WF, McGill RAR, Cherel Y, Votier SC, Phillips RA (2021) Stable isotopes demonstrate intraspecific variation in habitat use and trophic level of non-breeding albatrosses. Ibis 163:463–472

    Article  Google Scholar 

  • Murphy ME, King JR (1991) Nutritional aspects of avian molt. In: Beff BD, Cossee RO, Flux JEC, Heather BD, Hitchmough RA, Robertson CJR, Williams MJ (eds) Acta XX Congressus Internationalis Ornithologici. Christchurch, pp 2186–2193

  • Petryashov VV (2014) Lophogastrida and Mysida (Crustacea: Malacostraca: Peracarida) of the Southern Ocean. In: de Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C, van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, pp 149–154

    Google Scholar 

  • Petyt C (1995) Behaviour of seabirds around fishing trawlers in New Zealand subantarctic waters. Notornis 42:99–115

    Google Scholar 

  • Phillips RA (2006) Efficacy and effects of diet sampling of albatross chicks. Emu 106:305–308

    Article  Google Scholar 

  • Phillips RA, Hamer KC (2000) Postnatal development of northern fulmar chicks, Fulmarus glacialis. Physiol Biochem Zool 73:597–604

    Article  CAS  PubMed  Google Scholar 

  • Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090

    Article  Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272

    Article  Google Scholar 

  • Prince PA, Weimerskirch H, Huin N, Rodwell S (1997) Molt, maturation of plumage and ageing in the wandering albatross. Condor 99:58–72

    Article  Google Scholar 

  • QGIS Development Team (2020) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ridoux (1994) The diets and dietary segregation of seabirds at the subantarctic Crozet Islands. Mar Orn 22:1–92

    Google Scholar 

  • Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean Circumpolar Paths J Geophys Res 114:C11018

    Article  Google Scholar 

  • Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Studies Avian Biol 35:1–99

    Google Scholar 

  • Taylor GA, Elliott GP, Walker KJ, Bose S (2020) Year-round distribution, breeding cycle, and activity of white-headed petrels (Pterodroma lessonii) nesting on Adams Island, Auckland Islands. Notornis 67:369–386

    Google Scholar 

  • Vinogradov G (1999) Amphipoda. In: Boltovskoy D (ed) South Atlantic zooplankton. Backhuys Publishers, Leiden, pp 1141–1240

    Google Scholar 

  • Warham J (1967) The white-headed petrel Pterodroma lessoni at Macquarie Island. Emu 67:1–22

    Article  Google Scholar 

  • Warham J (1990) The petrels. Their ecology and breeding systems. Academic Press, London

    Google Scholar 

  • Warham J (1996) The behaviour, population biology and physiology of the petrels. Academic Press, London

    Google Scholar 

  • Watanuki Y, Thiébot JB (2018) Factors affecting the importance of myctophids in the diet of the world’s seabirds. Mar Biol 165:79

    Article  Google Scholar 

  • Weimerskirch H, Capdeville D, Duhamel G (2000) Factors affecting the number and mortality of seabirds attending trawlers and long-liners in the Kerguelen area. Polar Biol 23:236–249

    Article  Google Scholar 

  • Weimerskirch H, Zotier R, Jouventin P (1989) The avifauna of the Kerguelen Islands. Emu 89:15–29

    Article  Google Scholar 

  • Wilcox C, Van Sebille E, Hardesty BD (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Nat Acad Sci USA 112:11899–11904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams R, McEldowney A (1990) A guide to the fish otoliths from waters off the Australian Antarctic Territory, Heard and Macquarie Islands. ANARE Res Notes 75:1–173

    Google Scholar 

  • Wilson RP (1984) An improved stomach pump for penguins and other seabirds. J Field Ornithol 55:109–112

    Google Scholar 

  • Wilson RP, Ducamp JJ, Rees WG, et al (1992) Estimation of location: global coverage using light intensity. In: Wildlife Telemetry. pp 131–134

  • Xavier JC, Cherel Y (2021) Cephalopod beak guide for the Southern Ocean: an update on taxonomy. British Antarctic Survey, Cambridge

    Google Scholar 

  • Xavier JC, Croxall JP, Cresswell KA (2005) Boluses: an effective method for assessing the proportions of cephalopods in the diet of albatrosses. Auk 122:1182–1190

    Article  Google Scholar 

  • Xavier JC, Phillips RA, Cherel Y (2011) Cephalopods in marine predator diet assessments: why identifying upper and lower beaks is important? ICES J Mar Sci 68:1857–1864

    Article  Google Scholar 

  • Zotier R (1990) Breeding biology of the white-headed petrel Pterodroma lessoni on the Kerguelen Islands. Ibis 132:525–534

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R.A. Phillips from the British Antarctic Survey for providing geolocators, fieldworkers for collecting food samples and feathers, and deploying and recovering the geolocators, C. Trouvé for her help in stomach content analysis, and G. Guillou for running stable isotope analysis at the analytical platform of the LIENSs laboratory from the La Rochelle Université. The present work was supported financially and logistically by the Institut Polaire Français Paul Emile Victor (Programme No. 109, C. Barbraud) and the Terres Australes et Antarctiques Françaises.

Funding

This research was funded by the Institut Polaire Français Paul Emile Victor (Programme No. 109, C. Barbraud).

Author information

Authors and Affiliations

Authors

Contributions

YC, HW, CB, and KD conceived and designed the research, KD analysed the GLS data, YC analysed food samples and stable isotopes data and drafted the manuscript. All authors edited, read, and approved the manuscript.

Corresponding author

Correspondence to Yves Cherel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

Fieldwork was approved by the Conseil des Programmes Scientifiques et Technologies Polaires (CPST) of the Institut Polaire Français Paul Emile Victor (IPEV), and procedures and animal manipulations were approved by the Animal Ethics Committee of IPEV.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 606 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherel, Y., Delord, K., Barbraud, C. et al. Diet, isotopic niche, and spatial distribution of the white-headed petrel (Pterodroma lessonii) at Kerguelen Islands. Polar Biol 45, 1607–1621 (2022). https://doi.org/10.1007/s00300-022-03092-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-022-03092-7

Keywords

Navigation