Skip to main content
Log in

The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The overexpression of CsBCATs promotes flowering in Arabidopsis by regulating the expression of flowering time genes.

Abstract

The branched-chain amino acid transferases (BCATs) play an important role in the metabolism of branched-chain amino acids (BCAAs), such as isoleucine, leucine, and valine. They function in both the synthesis and the degradation of this class of amino acids. We identified and characterized the three BCAT genes in cucumber (Cucumis sativus L.). The tissue-specific expression profiling in cucumber plants revealed that CsBCAT2 and CsBCAT7 were highly expressed in the reproductive tissues, whereas CsBCAT3 expression was highly detected in the vegetative tissues. The subcellular localization patterns of three CsBCATs were observed in the mitochondria. The functional analyses of CsBCATs showed that CsBCAT2 and CsBCAT3 restored the growth of bat1Δ/bat2Δ double knockout yeast (Saccharomyces cerevisiae), and CsBCAT3 and CsBCAT7 with different substrate preferences acted in a reverse reaction. The transgenic approach demonstrated that the overexpression of the three CsBCATs resulted in early flowering phenotypes, which were associated with the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) in a manner in which they were dependent on GIGANTEA (GI)/CONSTANS (CO) and SHORT VEGETATIVE PHASE (SVP)/FLOWERING LOCUS C (FLC) modules. Our results, which are observed in conjunction, suggest that there is an interconnection between BCAT genes that function in BCAA metabolism and the flowering time in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCAA:

Branched-chain amino acid

BCAT:

Branched-chain aminotransferase

CO:

CONSTANS

FLC:

FLOWERING LOCUS C

FT:

FLOWERING LOCUS T

GI:

GIGANTEA

SVP:

SHORT VEGETATIVE PHASE

SOC1:

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

References

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Araujo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N et al (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563

    Article  CAS  Google Scholar 

  • Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230–240

    Article  CAS  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2004) Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus. J Appl Microbiol 96:1185–1193

    Article  CAS  Google Scholar 

  • Binder S, Knill T, Schuster J (2007) Branched-chain amino acid metabolism in higher plants. Physiol Plant 129:68–78

    Article  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl 1):S18–S31

    Article  CAS  Google Scholar 

  • Chen H, Saksa K, Zhao F, Qiu J, Xiong L (2010) Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants. Plant J 63:573–583

    Article  CAS  Google Scholar 

  • Colon M, Hernandez F, Lopez K, Quezada H, Gonzalez J, Lopez G, Aranda C, Gonzalez A (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 6:e16099

    Article  CAS  Google Scholar 

  • Daschner K, Thalheim C, Guha C, Brennicke A, Binder S (1999) In plants a putative isovaleryl-CoA-dehydrogenase is located in mitochondria. Plant Mol Biol 39:1275–1282

    CAS  PubMed  Google Scholar 

  • Diebold R, Schuster J, Daschner K, Binder S (2002) The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins. Plant Physiol 129:540–550

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  Google Scholar 

  • Feng P, Guo H, Chi W, Chai X, Sun X, Xu X, Ma J, Rochaix JD, Leister D et al (2016) Chloroplast retrograde signal regulates flowering. Proc Natl Acad Sci USA 113:10708–10713

    Article  CAS  Google Scholar 

  • Gao F, Wang C, Wei C, Li Y (2009) A branched-chain aminotransferase may regulate hormone levels by affecting KNOX genes in plants. Planta 230:611–623

    Article  CAS  Google Scholar 

  • Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, Tadmor Y, Gepstein S, Giovannoni JJ et al (2010) Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J Exp Bot 61:1111–1123

    Article  CAS  Google Scholar 

  • Gu L, Jones AD, Last RL (2010) Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant J 61:579–590

    Article  CAS  Google Scholar 

  • Hildebrandt TM, Nesi AN, Araujo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8:1563–1579

    Article  CAS  Google Scholar 

  • Hong SM, Bahn SC, Lyu A, Jung HS, Ahn JH (2010) Identification and testing of superior reference genes for a starting pool of transcript normalization in Arabidopsis. Plant Cell Physiol 51:1694–1706

    Article  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  CAS  Google Scholar 

  • Hwang YH, Kim SK, Lee KC, Chung YS, Lee JH, Kim JK (2016) Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Plant Cell Rep 35:857–865

    Article  CAS  Google Scholar 

  • Ji H, Zhu Y, Tian S, Xu M, Tian Y, Li L, Wang H, Hu L, Ji Y et al (2014) Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis. BMC Plant Biol 14:237

    Article  Google Scholar 

  • Jin JB, Bae H, Kim SJ, Jin YH, Goh CH, Kim DH, Lee YJ, Tse YC, Jiang L et al (2003) The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15:2357–2369

    Article  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  Google Scholar 

  • Kandra G, Severson R, Wagner GJ (1990) Modified branched-chain amino acid pathways give rise to acyl acids of sucrose esters exuded from tobacco leaf trichomes. Eur J Biochem 188:385–391

    Article  CAS  Google Scholar 

  • Kazan K, Lyons R (2016) The link between flowering time and stress tolerance. J Exp Bot 67:47–60

    Article  CAS  Google Scholar 

  • Knill T, Schuster J, Reichelt M, Gershenzon J, Binder S (2008) Arabidopsis branched-chain aminotransferase 3 functions in both amino acid and glucosinolate biosynthesis. Plant Physiol 146:1028–1039

    Article  CAS  Google Scholar 

  • Kochevenko A, Klee HJ, Fernie AR, Araujo WL (2012) Molecular identification of a further branched-chain aminotransferase 7 (BCAT7) in tomato plants. J Plant Physiol 169:437–443

    Article  CAS  Google Scholar 

  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15 (table of contents)

    Article  CAS  Google Scholar 

  • Kroumova AB, Xie Z, Wagner GJ (1994) A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants. Proc Natl Acad Sci USA 91:11437–11441

    Article  CAS  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  Google Scholar 

  • Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628–632

    Article  CAS  Google Scholar 

  • Lee JH, Jin S, Kim SY, Kim W, Ahn JH (2017) A fast, efficient chromatin immunoprecipitation method for studying protein-DNA binding in Arabidopsis mesophyll protoplasts. Plant Methods 13:42

    Article  Google Scholar 

  • Li L, Thipyapong P, Breeden DC, Steffens JC (2003) Overexpression of a bacterial branched-chain alpha-keto acid dehydrogenase complex in Arabidopsis results in accumulation of branched-chain acyl-CoAs and alteration of free amino acid composition in seeds. Plant Sci 165:1213–1219

    Article  CAS  Google Scholar 

  • Liepman AH, Olsen LI (2004) Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci 23:73–89

    Article  CAS  Google Scholar 

  • Maloney GS, Kochevenko A, Tieman DM, Tohge T, Krieger U, Zamir D, Taylor MG, Fernie AR, Klee HJ (2010) Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant Physiol 153:925–936

    Article  CAS  Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    Article  CAS  Google Scholar 

  • Okada K, Hirotsu K, Sato M, Hayashi H, Kagamiyama H (1997) Three-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 A resolution. J Biochem 121:637–641

    Article  CAS  Google Scholar 

  • Prohl C, Kispal G, Lill R (2000) Branched-chain-amino-acid transaminases of yeast Saccharomyces cerevisiae. Methods Enzymol 324:365–375

    Article  CAS  Google Scholar 

  • Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–1719

    Article  CAS  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M, Tonelli C, Conti L (2016) ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana. J Exp Bot 67:6309–6322

    Article  CAS  Google Scholar 

  • Schuster J, Binder S (2005) The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol Biol 57:241–254

    Article  CAS  Google Scholar 

  • Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S (2010) BRANCHED-CHAIN AMINOTRASFERASE4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinates in Arabidopsis. Plant Cell 18:2664–2679

    Article  Google Scholar 

  • Singh BK, Shaner DL (1995) Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7:935–944

    Article  CAS  Google Scholar 

  • Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Walters DS, Steffens JC (1990) Branched-chain amino acid metabolism in the biosynthesis of Lycopersicon pennellii glucose esters. Plant Physiol 93:1544–1551

    Article  CAS  Google Scholar 

  • Warzybok A, Migocka M (2013) Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS One 8:e72887

    Article  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Win KT, Zhang C, Song K, Lee JH, Lee S (2015) Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the female (F) locus in cucumber (Cucumis sativus L.). Mol Breed 35:229

    Article  Google Scholar 

  • Yennawar N, Dunbar J, Conway M, Hutson S, Farber G (2001) The structure of human mitochondrial branched-chain aminotransferase. Acta Crystallogr D Biol Crystallogr 57:506–515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Research Foundation of Korea, and the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center no. PJ01329601) of the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyeob Lee.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Additional information

Communicated by Jeong Sheop Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1439 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kim, YC., Jung, Y. et al. The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. Plant Cell Rep 38, 25–35 (2019). https://doi.org/10.1007/s00299-018-2346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2346-x

Keywords

Navigation