Skip to main content
Log in

Influence of light intensity and selection scheme on regeneration time of transgenic flax plants

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

This study aimed at establishing a protocol to increase the number of regenerated shoots and to limit the recovery of “escapes” during the regeneration of transgenic flax plants (cv Barbara). Here, we describe how light, adapted media and selection scheme could stimulate the transformation process, the organogenic potentiality of calli (by a factor of 3.2) and accelerate the transgenic shoot regeneration (by a factor of about 2). On comparison of the transformation rate observed while using low light (LL) and high light (HL) a considerable enhancement from 0.12 to 5.7% was evident. The promotive effect of light might also had a direct beneficial effect on transgenic plant production time leading to a reduction of more than 4 months in the time need to obtain transgenic seeds. All data indicate that HL plays a role on growth and on protein, rubisco and pigment contents by stimulating the gene implicated in photosynthetic and Calvin cycle processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

Cv:

Cultivar

DAF:

Day after flowering

MES:

Morpholino ethane sulfonic acid

NAA:

Naphthalene acetic acid

PRK:

Phosphoribulokinase

rbs :

Gene encoding Rubisco

rbs Act:

Gene encoding Rubisco activase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthetic of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • Anderson LE, Carol AA (2004) Enzyme co-localization with Rubisco in pea leaf chloroplasts. Photosynth Res 82:49–58

    Article  PubMed  CAS  Google Scholar 

  • Basiran N, Armitage P, Scott RJ, Draper J (1987) Genetic transformation of flax (Linum usitatissimum) by Agrobacterium tumefaciens: regeneration of transformed shoots via callus phase. Plant Cell Rep 6:396–399

    Article  CAS  Google Scholar 

  • Bojsen K, Donaldson I, Hapdrup A, Joersbo M, Kreiberg J, Nielsen J, Okkels FT, Petersen SG (1998) Mannose or xylose based positive selection. US Patent 5767378

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bretagne-Sagnard B, Chupeau Y (1996) Selection of transgenic flax plants is facilitated by spectinomycin. Transgenic Res 5:131–137

    Article  CAS  Google Scholar 

  • Bruyant P, Shaumann A, Djiana R, Morvan C, Balange AP (1996) Effect of light on total proteins and peroxidase activities in the culture medium and in cell wall fraction of cultured flax cells. Plant Physiol Biochem 34:417–423

    CAS  Google Scholar 

  • Burbulis N, Blinstrubienne A, Sliesaravicius A, Venskutoniene E (2005) Influence of genotypes, growth regulators, sucrose level and preconditioning of donor plants on flax (Linum usitatissimum L.) anther culture. Acta Biol Hung 56:323–331

    Article  PubMed  Google Scholar 

  • Chen X, Yu T, Xiong J, Zhang Y, Hua Y, Li Y, Zhu Y (2004) Molecular cloning and expression analysis of rice phosphoribulokinase gene that is regulated by environmental stresses. Mol Biol Rep 31:249–255

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lu L, Deng W, Yang X, McAvoy R, Zhao D, Pei Y, Luo K, Duan H, Smith W, Thammina C, Zheng X, Ellis D, Li Y (2006) In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus. Plant Cell Rep 25:1043–1051

    Article  Google Scholar 

  • Day A, Addi M, Kim W, David H, Bert F, Mesnage P, Rolando C, Chabbert B, Neutelings G, Hawkins S (2005) ESTs from the fiber-bearing stem tissues of flax (Linum usitatissimum); expression analyses of sequences related to cell-wall development. Plant Biol 7:23–32

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, McHughen A (1993) An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci 88:61–71

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. BRL Focus 12:13–15

    Google Scholar 

  • Ebskamp MJM (2002) Engineering flax and hemp for an alternative to cotton. Trends Biotechnol 20:2298–2300

    Article  Google Scholar 

  • Gupta SK, Singh PK, Sawant SV, Chaturveli R, Tuli R (2000) Effect of light intensity on in vitro multiple shoot induction and regeneration of cotton (Gossypium hirsutum L. cv Khandawa-2). Indian J Exp Biol 38:399–401

    PubMed  CAS  Google Scholar 

  • Gutierrez L, Conjero G, Casteain M, Guénin S, Verdeil JL, Thomasset B, Van Wuytswinkel O (2006) Identification of gene expression regulators specifically expressed during plant seed maturation. J Exp Bot 57:1919–1932

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Martin J, Fliniaux O, Legrand B, Gutierrez L, Arroo RR, Mesnard F, Lamblin F, Laine E (2006) Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Haque MS, Wada T, Hattori K (1997) High frequency shoot regeneration and plantlet formation from root tip of garlic. Plant Cell Rep 50:83–89

    Google Scholar 

  • Hepburn AG, Clarke LE, Blundy KS, White J (1983) Nopaline Ti-plasmid, pTiT37, T-DNA insertions into a flax genome. J Mol Appl Gene 2:211–224

    CAS  Google Scholar 

  • Jain RK, Thompson RG, Taylor DC, MacKenzie SL, McHughen A, Rowland GG, Tenaschuk D, Goffey M (1999) Isolation and characterization of two promoters from linseed for genetic engineering. Crop Sci 39:1696–1701

    CAS  Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    Article  PubMed  CAS  Google Scholar 

  • Laine E, Lamblin F, Lacoux J, Dupre P, Roger D, Sihachakr D, David D (2000) Gelling agent influences the detrimental effect of kanamycin on adventitious budding in flax. Plant Cell Tiss Org Cult 63:77–80

    Article  CAS  Google Scholar 

  • Lamblin F, Aimé A, Hano C, Roussy I, Domon JM, Van Droogenbroeck B, Lainé E (2007) The use of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum). Plant Cell Rep 26:765–772

    Article  PubMed  CAS  Google Scholar 

  • Lang X, Dalai AK, BakhshiNN Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80:53–62

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Liu Z, Erhan SZ, Akin DE, Barton FE (2007) “Green” composites from renewable resources: preparation of epoxidized soybean and flax fiber composites. J Agric Food Chem 54:2134–3137

    Article  Google Scholar 

  • Liu C, Moon K, Honda H, Kobayashi T (2001) Enhanced regeneration of rice (Oryza sativa L.) embryogenic callus by light irradiation I growth phase. J Biosci Bioeng 91:319–321

    Article  PubMed  CAS  Google Scholar 

  • Lorenc-Kukula K, Amarowicz R, Oszmianski J, Doermann P, Starzycki M, Skala J, Zuk M, Kulma A, Szopa J (2005) Pleotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 53:3685–3692

    Article  PubMed  CAS  Google Scholar 

  • Marri L, Sparla F, Pupillo P, Trost P (2005) Co-ordinated gene expression of photosynthetic glyceraldehyde 3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana. J Exp Bot 56:73–80

    PubMed  CAS  Google Scholar 

  • Martin-Urdiroz N, Garrido-Gala J, Martin J, Barandiaran X (2004) Effect of light on the organogenic ability of garlic roots using a one-step in vitro system. Plant Cell Rep 22:721–724

    Article  PubMed  CAS  Google Scholar 

  • Mc Hughen A (2000) Transgenic linseed flax (Linum usitatissimum). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Transgenic crops I, vol 46. Springer, Berlin, pp 339–351

    Google Scholar 

  • Mlynarova L, Bauer M, Nap JP, Petrova A (1994) High efficiency Agrobacterium-mediated gene transfer to flax. Plant Cell Rep 13:282–285

    Article  CAS  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray BE, Handyside RJ, et Keller WA (1977) In vitro regeneration of shoots on stem explants of haploid and diploid flax (Linum usitatissimum). Can J Genet Cytol 19:177–186

    Google Scholar 

  • Musialak M, Wröbel-Kwiatkowska M, Kulma A, Starzycki M, Szopa J (2008) Improving retting of fibre through genetic modification of flax to express pectinases. Transgenic Res 17:133–147

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Goto S, Nakano T, Sakaiya M, Hirano T, Tsukaya H, Komeda Y, Kobayashi H (2006) Arabidopsis mutants by activation tagging in which photosynthesis genes are expressed in dedifferentiated calli. Plant cell Physiol 47:319–331

    Article  PubMed  CAS  Google Scholar 

  • Nuernberg K, Fischer K, Nuernberg G, Kuechenmeister U, Klosowska D, Eliminowska-Wenda G, Fiedler I, Ender K (2005) Effects of dietary olive and linseed oil on lipid composition, meat quality, sensory characteristics and muscle structure in pigs. Meat Sci 70:63–74

    Article  CAS  Google Scholar 

  • Pearcy RW, Krall JP, Sassenrath-Cole GF (1996) Photosynthesis in fluctuating light environments. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 321–346

    Google Scholar 

  • Portis AR, Li C, Wang D, Salvucci E (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Rakousky S, Tejklova E, Wiesner I, Wiesnerova D, Kocabek T, Ondrej M (1999) Hygromicin B—an alternative in flax transformant selection. Biol Plant 42:361–369

    Article  CAS  Google Scholar 

  • Rutkowska-Krause I, Mankowska G, Lukaszewicz M, Sz opa J (2003) Regeneration of flax (Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to fusarium. Plant Cell Rep 22:110–116

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase and global climate change. J Exp Bot 59:1581–1595

    Article  PubMed  CAS  Google Scholar 

  • Sassenrath-Cole GF, Pearcy RW (1994) Regulation of photosynthetic induction state by the magnitude and duration of low light exposure. Plant Physiol 10:1115–1123

    Google Scholar 

  • Wröbel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–51

    Article  PubMed  Google Scholar 

  • Wröbel-Kwiatkowska M, Starzycki M, Zebrowski J, Oszmianski J, Szopa J (2007a) Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J Biotechnol 128:919–934

    Article  PubMed  Google Scholar 

  • Wröbel-Kwiatkowska M, Zebrowski J, Starzycki M, Oszmianski J, Szopa J (2007b) Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol Prog 23:269–277

    Article  PubMed  Google Scholar 

  • Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 16:580–586

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Biogemma (France) for providing the p35S-gus binary vector, G. Neutelings and S. Hawkins for flax EST information, V. Devillers for technical assistance with flax transformation, and S. Hawkins for helping with English. This work was financially supported by the “Conseil Régional de Picardie” (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Thomasset.

Additional information

Communicated by L. Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillot, S., Rosiau, E., Laplace, C. et al. Influence of light intensity and selection scheme on regeneration time of transgenic flax plants. Plant Cell Rep 28, 359–371 (2009). https://doi.org/10.1007/s00299-008-0638-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0638-2

Keywords

Navigation