Skip to main content
Log in

Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites

  • Genetics and Genomics
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Methyl jasmonate (MeJA) treatment increases the levels of plant secondary metabolites, including ginsenosides, which are considered to be the main active compounds in ginseng (Panax ginseng C.A. Meyer). To create a ginseng gene resource that contains the genes involved in the biosynthesis of secondary metabolites, including ginsenosides, we generated 3,134 expression sequence tags (ESTs) from MeJA-treated ginseng hairy roots. These ESTs assembled into 370 clusters and 1,680 singletons. Genes yielding highly abundant transcripts were those encoding proteins involved in fatty acid desaturation, the defense response, and the biosynthesis of secondary metabolites. Analysis of the latter group revealed a number of genes that may be involved in the biosynthesis of ginsenosides, namely, oxidosqualene cyclase (OSC), cytochrome P450, and glycosyltransferase. A novel OSC gene was also identified by this analysis. RNA gel blot analysis confirmed that transcription of this OSC gene, along with squalene synthase (SS) and squalene epoxidase (SE) gene transcription, is increased by MeJA treatment. This ginseng EST data set will also provide important information on the genes that are involved in the biosynthesis of other secondary metabolites and the genes that are responsive to MeJA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

β-AS:

β-Amyrin synthase

DS:

Dammarendiol synthase

ESTs:

Expression sequence tags

LS:

Lupeol synthase

MeJA:

Methyl jasmonic acid

OSC:

Oxidosqualene cyclase

SE:

Squalene epoxidase

SS:

Squalene synthase

References

  • Achnine L, Huhman DV, Summer L, Matsuda SPT, Dixon RA (2004) Functional genomics to dissect triterpene saponin biosynthesis in Medicago trundatula. In: Plant and Animal Genome 12. John Wiley, San Diego, Poster no. P870

  • Aoyagi H, Kobayashi Y, Yamada K, Yokoyama M, Kusakari K, Tanaka H (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl Microbiol Biotechnol 57:482–488

    Article  CAS  PubMed  Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96:1761–1766

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry B, Muller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60-kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    Article  CAS  PubMed  Google Scholar 

  • Corey EJ, Matsuda SPT, Bartel B (1993) Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci USA 90:11628–11632

    CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Grussem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  • Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Penzes C, Johnson AG, Bull D (1996) Molecular characterization of cerberine bridge enzyme genes from opium poppy. Plant Physiol 112:1669–1677

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Mijnsbrugge KV, Bauw G, Boerjan W, Montagu MV, Davin LB, Lewis NG (1998) Evolution of plant defense mechanisms. J Biol Chem 274:7516–7527

    Article  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75:31–49

    Google Scholar 

  • Hayashi H, Huang P, Inoue K (2003) Up-regulation of soyasponin biosynthesis by methyl jasmonate in cultured cell of Glycyrrhiza glabra. Plant Cell Physiol 44:404–411

    Article  CAS  PubMed  Google Scholar 

  • Herrera JBR, Bartel B, Wilson WK, Matsuda SPT (1998) Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry 7:1905–1911

    Article  Google Scholar 

  • Hirata T, Tamura Y, Yokobatake N, Shimoda Y, Ashida Y (2000) A 38 kDa allylic alcohol dehydrogenase from the cultured cells of Nicotiana tabacum. Phytochemistry 55:297–303

    Article  CAS  PubMed  Google Scholar 

  • Husselstein-Muller T, Schaller H, Benveniste P (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene triterpene cyclases from Arabidopsis thaliana. Plant Mol Biol 45:75–92

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ebizuka Y (1996) Purification and characterization of furostanol glycoside 26-O-β-glucosidase from Costus speciosus thizomes. FEBS Lett 378:157–160

    Google Scholar 

  • Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22:224–230

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Kang KS, Kim SY, Kim IS (2000) Formation of fibrillar multimers of oat β-glucosidase isoenzymes is mediated by the As-Glu1 monomer. J Mol Biol 303:831–842

    Article  CAS  PubMed  Google Scholar 

  • Kirsch C, Hahlbrock K, Somssich IE (1997) Rapid and transient induction of a parsley microsomal Δ12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiol 115:283–289

    Article  CAS  PubMed  Google Scholar 

  • Kushiro T, Shibuya M, Ebizuja Y (1998) β-amyrin sythase. Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244

    Article  CAS  PubMed  Google Scholar 

  • Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) Orcinol-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Lu MB, Wong HL, Teng WL (2001) Effect of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep 20:674–677

    CAS  Google Scholar 

  • Martin D, Throll D, Gershenzon J, Bohlmann J (2002) Methyl Jasmonate induces traumatic resin ducts, terpenoid resion biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stem. Plant Physiol 129:1002–1028

    Article  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  CAS  PubMed  Google Scholar 

  • Moiseyev GP, Fedoreyeva LI, Zhuravlev YN, Yasnetskaya E, Jekel PA, Beintema JJ (1997) Primary structure of two ribonucleases from ginseng calluses: new members of the PR-10 family of intracellular pathogenesis-related plant proteins. FEBS Lett 407:207–210

    Google Scholar 

  • Morita M, Shibuya M, Kushiro T, Masuda K, Ebizuka Y (2000) Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum). Eur J Biochem 267:3453–3460

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H, Tabata S (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and cross talk with other phytohormone signaling pathways. DNA Res 8:153–161

    CAS  PubMed  Google Scholar 

  • Schenk PM, Kaan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M, Zhang H, Endo A, Shishikura K, Kushiro T, Ebizuka Y (1999) Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur J Biochem 266:302–307

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SP, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Verwoerd TC, Dekker BM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    CAS  PubMed  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 9:380–386

    Article  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signaled plant gene expression. Trends Plant Sci 2:1360–1385

    Article  Google Scholar 

  • Yu KW, Gao W, Han EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng 11:211–215

    Article  CAS  Google Scholar 

  • Yukimine Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccation III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    PubMed  Google Scholar 

  • Zhang H, Shibuya M, Yokota S, Ebizuka Y (2003) Oxidosqualene cyclases from cell cultures of Betula platyphylla var. japonica: molecular cloning of oxidosqualene cyclases in the higher plants. Biol Pharm Bull 26:642–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (code nr. PF0330101-00 for DWC) from the Plant Diversity Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology of the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woog Choi.

Additional information

Communicated by I.S. Chung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DW., Jung, J., Ha, Y.I. et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23, 557–566 (2005). https://doi.org/10.1007/s00299-004-0845-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0845-4

Keywords

Navigation