Skip to main content

Advertisement

Log in

Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The interest is given on the preparation of nanocomposites of titanium dioxide (TiO2) with conducting polymer polypyrrole (PPy) because the resulting composites possess enhanced photocatalytic activity under visible light in comparison with pure TiO2 photocatalyst. In such composite, there is a synergistic activity of the components. It is very important to optimize the synthesis conditions in order to obtain PPy/TiO2 composites with the optimal thickness of conductive polymer layer on TiO2 and minimal possible aggregation of particles. PPy/TiO2 composites were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, UV–Vis spectroscopy, scanning electron microscopy and transmission electron microscopy. The photocatalytic efficiency of the samples was determined by following the decomposition of Reactive Red 45 dye under UV and visible light, which was monitored by UV–Vis spectroscopy (as a change in absorbance of wavelength at 542 nm). The results show enhanced photocatalytic efficiency of the samples under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486. https://doi.org/10.1039/c3cs60188a

    Article  CAS  PubMed  Google Scholar 

  2. Serpone N, Emeline AV (2012) Semiconductor photocatalysis—past, present, and future outlook. J Phys Chem Lett 3:673–677. https://doi.org/10.1021/jz300071j

    Article  CAS  PubMed  Google Scholar 

  3. Jing L, Zhou W, Tiana G, Fu H (2013) Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev 42:9509–9549. https://doi.org/10.1039/C3CS60176E

    Article  CAS  PubMed  Google Scholar 

  4. Pelaez M et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  5. Plass R, Pelet S, Krueger J, Gratzel M (2002) Quantum dot sensitization of organic–inorganic hybrid solar cells. J Phys Chem B 106:7578–7583. https://doi.org/10.1021/jp020453l

    Article  CAS  Google Scholar 

  6. Park JH, Kim S, Bard A (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. J Nano Lett 6:24–28. https://doi.org/10.1021/nl051807y

    Article  CAS  Google Scholar 

  7. Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456. https://doi.org/10.1063/1.1493647

    Article  CAS  Google Scholar 

  8. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    Article  CAS  PubMed  Google Scholar 

  9. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750. https://doi.org/10.1126/science.1200448

    Article  CAS  PubMed  Google Scholar 

  10. Cobo I, Li M, Sumerlin BS, Sébastien Perrier S (2015) Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat Mater 14:143–159. https://doi.org/10.1038/nmat4106

    Article  CAS  PubMed  Google Scholar 

  11. Lutteroti L. Material analysis using diffraction (MAUD). General diffraction/reflectivity analysis program. http://www.ing.unitn.it/~maud/index.html. Accessed 1 June 2017

  12. López R, Gómez R, Oros S (2011) Photophysical and photocatalytic properties of TiO2–Cr sol–gel prepared semiconductors. Catal Today 166:159–165. https://doi.org/10.1016/j.cattod.2011.01.010

    Article  CAS  Google Scholar 

  13. Jeeju PP, Varma SJ, Puthampadath AFS, Sajimol AM, Jayalekshmi S (2012) Novel polypyrrole films with excellent crystallinity and good thermal stability Mater. Chem Phys 134:803–808. https://doi.org/10.1016/j.matchemphys.2012.03.072

    Article  CAS  Google Scholar 

  14. Dai T, Yang X, Lu Y (2007) Conductive composites of polypyrrole and sulfonic-functionalized silica spheres. Mater Lett 61:3142–3145. https://doi.org/10.1016/j.matlet.2006.11.012

    Article  CAS  Google Scholar 

  15. Pine SH, Hendrickson JB, Cram DJ, Hammond GS (1980) Organic chemistry, 4th edn. McGraw-Hill Kogakusha LTD, Tokyo

    Google Scholar 

  16. Turcu RP, Bica D, Vekas L, Aldea N, Macovei D, Nan A, Pana O, Marinica O, Grecu R, Pop CVL (2006) Synthesis and characterization of nanostructured polypyrrole-magnetic particles hybrid material. Romanian Rep Phys 58:359–367

    CAS  Google Scholar 

  17. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  18. Metin A, Cilgi GK, Kuru FD, Cetisli H (2013) Thermal decomposition kinetics of polypyrrole and its star shaped copolymer. J Therm Anal Calorim 111:1627–1632. https://doi.org/10.1007/s10973-012-2351-1

    Article  CAS  Google Scholar 

  19. Jakab E, Mészáros E, Omastová M (2007) Thermal decomposition of polypyrroles. J Therm Anal Calorim 88:515–521

    Article  CAS  Google Scholar 

  20. Bhaumik M, McCrindle R, Maity A (2013) Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres. Chem Eng J 228:506–515. https://doi.org/10.1016/j.cej.2013.05.026

    Article  CAS  Google Scholar 

  21. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater 14:943–956. https://doi.org/10.1002/adfm.200400180

    Article  CAS  Google Scholar 

  22. Bof Bufon CC, Vollmer J, Heinzel T, Espindola P, John H, Heinze J (2005) Relationship between chain length, disorder, and resistivity in polypyrrole films. J Phys Chem B 109:19191–19199. https://doi.org/10.1021/jp053516j

    Article  CAS  PubMed  Google Scholar 

  23. Abdulla HS, Abbo AI (2012) Optical and electrical properties of thin films of polyaniline and polypyrrole. Int J Electrochem Sci 7:10666–10678

    CAS  Google Scholar 

  24. Mahanta D, Madras G, Radhakrishnan S, Patil S (2008) Adsorption of sulfonated dyes by polyaniline emeraldine salt and its kinetics. J Phys Chem B 112(33):10153–10157. https://doi.org/10.1021/jp803903x

    Article  CAS  PubMed  Google Scholar 

  25. Sadollahkhani A, Kazeminezhad I, Lu J, Nur O, Hultman L, Willander M (2014) Synthesis, structural characterization and photocatalytic application of ZnO@ZnS core–shell nanoparticles. RSC Adv 4:36940–36950. https://doi.org/10.1039/C4RA05247A

    Article  CAS  Google Scholar 

  26. Luo Q, Li X, Wang D, Wang Y, An J (2011) Photocatalytic activity of polypyrrole/TiO2 nanocomposites under visible and UV light. J Mater Sci 46:1646–1654

    Article  CAS  Google Scholar 

  27. Ghosh S, Kouamé NA, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert PH, Remita H (2015) Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater 14:505–511. https://doi.org/10.1038/nmat4220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Croatian Science Foundation (Hrvatska zaklada za znanost, HRZZ) through the research project “Development of Photocatalytic Polymer Nanocomposites for Wastewater Treatment” DePoNPhoto, Project Number 5092.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ljerka Kratofil Krehula or Zlata Hrnjak-Murgić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kratofil Krehula, L., Stjepanović, J., Perlog, M. et al. Conducting polymer polypyrrole and titanium dioxide nanocomposites for photocatalysis of RR45 dye under visible light. Polym. Bull. 76, 1697–1715 (2019). https://doi.org/10.1007/s00289-018-2463-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2463-2

Keywords

Navigation