Skip to main content
Log in

A multiscale maximum entropy moment closure for locally regulated space–time point process models of population dynamics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The prevalence of structure in biological populations challenges fundamental assumptions at the heart of continuum models of population dynamics based only on mean densities (local or global). Individual-based models (IBMs) were introduced during the last decade in an attempt to overcome this limitation by following explicitly each individual in the population. Although the IBM approach has been quite useful, the capability to follow each individual usually comes at the expense of analytical tractability, which limits the generality of the statements that can be made. For the specific case of spatial structure in populations of sessile (and identical) organisms, space–time point processes with local regulation seem to cover the middle ground between analytical tractability and a higher degree of biological realism. This approach has shown that simplified representations of fecundity, local dispersal and density-dependent mortality weighted by the local competitive environment are sufficient to generate spatial patterns that mimic field observations. Continuum approximations of these stochastic processes try to distill their fundamental properties, and they keep track of not only mean densities, but also higher order spatial correlations. However, due to the non–linearities involved they result in infinite hierarchies of moment equations. This leads to the problem of finding a ‘moment closure’; that is, an appropriate order of (lower order) truncation, together with a method of expressing the highest order density not explicitly modelled in the truncated hierarchy in terms of the lower order densities. We use the principle of constrained maximum entropy to derive a closure relationship for truncation at second order using normalisation and the product densities of first and second orders as constraints, and apply it to one such hierarchy. The resulting ‘maxent’ closure is similar to the Kirkwood superposition approximation, or ‘power-3’ closure, but it is complemented with previously unknown correction terms that depend mainly on the avoidance function of an associated Poisson point process over the region for which third order correlations are irreducible. This domain of irreducible triplet correlations is found from an integral equation associated with the normalisation constraint. This also serves the purpose of a validation check, since a single, non-trivial domain can only be found if the assumptions of the closure are consistent with the predictions of the hierarchy. Comparisons between simulations of the point process, alternative heuristic closures, and the maxent closure show significant improvements in the ability of the truncated hierarchy to predict equilibrium values for mildly aggregated spatial patterns. However, the maxent closure performs comparatively poorly in segregated ones. Although the closure is applied in the context of point processes, the method does not require fixed locations to be valid, and can in principle be applied to problems where the particles move, provided that their correlation functions are stationary in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birch DA, Young WR (2006) A master equation for a spatial population model with pair interactions. Theor Popul Biol 70(1): 26–42

    Article  MATH  Google Scholar 

  • Blaszczyszyn B (1995) Factorial moment expansion for stochastic systems. Stoch Process Appl 56: 321–335

    Article  MATH  MathSciNet  Google Scholar 

  • Blath J, Etheridge A, Meredith M (2007) Coexistence in locally regulated competing populations and survival of branching annihilating random walk. Ann Appl Probab 17(5/6): 1474–1507

    Article  MATH  MathSciNet  Google Scholar 

  • Bolker B, Pacala SW (1997) Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor Popul Biol 52: 179–197

    Article  MATH  Google Scholar 

  • Bolker B, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153(6): 575–602

    Article  Google Scholar 

  • Bolker B, Pacala SW, Neuhauser C (2003) Spatial dynamics in model plant communities: what do we really know. Am Nat 162(2): 135–148

    Article  Google Scholar 

  • Bolker B, Pacala SW, Levin SA (2000) Moment methods for ecological processes in continuous space. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 388–411

    Google Scholar 

  • Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation in ecohydrology. Rev Geophys 47

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielboerger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96(1): 18–34

    Google Scholar 

  • Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubell SP, Foster R, Itoh A, LaFrankie JV, Seng Lee H, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science 288: 1414–1418

    Article  Google Scholar 

  • Cressie NA (1991) Statistics for spatial data. Wiley, New York

    MATH  Google Scholar 

  • Dale MR (1999) Spatial pattern analysis in plant ecology. In: Cambridge studies in ecology. Cambridge University Press, London

  • Daley D, Vere-Jones D (1988) An introduction to the theory of point processes. In: Springer series in statistics. Springer, Berlin

  • Daley D, Vere-Jones D (2003) An introduction to the theory of point processes. Volume I: elementary theory and methods. In: Probability and its applications, 2nd edn. Springer, Berlin

  • Daley D, Vere-Jones D (2008) An introduction to the theory of point processes. Volume II: general theory and structure. In: Probability and its applications, 2nd edn. Springer, Berlin

  • Daley DJ, Vere-Jones D (2004) Scoring probability forecasts for point processes: the entropy score and information gain. J Appl Probab 41A: 297–312

    Article  MATH  MathSciNet  Google Scholar 

  • Damgaard C (2007) On the hyperbolic competition model: a comment to Weigelt et~al. (2007). J Ecol 95(4): 599–600

    Article  Google Scholar 

  • DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36: 147–168

    Article  Google Scholar 

  • Dieckmann U, Law R (2000) Relaxation projections and the method of moments. In: Dieckmann U, Law R, Metz JA (eds) The Geometry of Ecological Interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 412–455

    Google Scholar 

  • Dieckmann U, Law R, Metz JA (eds) (2000) The geometry of ecological interactions. In: Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, London

    MATH  Google Scholar 

  • Dormann C, Roxburgh S (2005) Experimental evidence rejects pairwise modelling approach to coexistence in plant communities. Proc R Soc B Biol Sci 272(1569): 1279–1285

    Article  Google Scholar 

  • Durret R (1999) Stochastic spatial models. In: Capasso V, Dieckmann O (eds) Mathematics inspired by biology. Lecture notes in mathematics, vol 1714. Springer, Berlin, pp 39–94

  • Durrett R, Levin SA (1994) Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc Lond B 343: 329–350

    Article  Google Scholar 

  • Etheridge AM (2004) Survival and extinction in a locally regulated population. Ann Appl Probab 14(1): 188–214

    Article  MATH  MathSciNet  Google Scholar 

  • Filipe J, Gibson G (1998) Studying and approximating spatio-temporal models for epidemic spread and control. Philos Trans R Soc Lond Ser B Biol Sci 353(1378): 2153–2162

    Article  Google Scholar 

  • Filipe J, Gibson G (2001) Comparing approximations to spatio-temporal models for epidemics with local spread. Bull Math Biol 63(4): 603–624

    Article  Google Scholar 

  • Filipe J, Maule M (2003) Analytical methods for predicting the behaviour of population models with general spatial interactions. Math Biosci 183(1): 15–35

    Article  MATH  MathSciNet  Google Scholar 

  • Filipe J, Maule M, Gilligan C (2004) On ‘Analytical models for the patchy spread of plant disease’. Bull Math Biol 66(5): 1027–1037

    Article  Google Scholar 

  • Flierl H et al (1999) From individuals to aggregations: the interplay between behavior and physics. J Theor Biol 196: 397–454

    Article  Google Scholar 

  • Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Probab 14(4): 1880–1919

    Article  MATH  MathSciNet  Google Scholar 

  • Gardiner C (1985) Handbook of stochastic methods, 2nd edn. Springer, Berlin

    Google Scholar 

  • Gillespie D (1976) General method for numerically simulating stochastic time evolution of coupled chemical reactions. J Comput Phys 22: 403–434

    Article  MathSciNet  Google Scholar 

  • Gratzer G, Canham C, Dieckmann U, Fisher A, Iwasa Y, Law R, Lexer MJ, Sandmann H, Spies TA, Splechtna BE, Szwagryzk J (2004) Spatio-temporal development of forests-current trends in field methods and models. Oikos 107(1): 3–15

    Article  Google Scholar 

  • Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future?. Ecol Modell 115: 129–148

    Article  Google Scholar 

  • Gross K (2008) Positive interactions among competitors can produce species-rich communities. Ecol Lett 11: 929–936

    Article  Google Scholar 

  • Grouba V, Zorin A, Sevastianov L (2004) The superposition approximation: a critical review. Int J Mod Phys B 18(1): 1–44

    Article  MATH  Google Scholar 

  • Guan Y (2007a) A composite likelihood cross-validation approach in selecting the bandwidth for the estimation of the pair correlation function. Scand J Stat 34(2): 336–346

    Article  MATH  Google Scholar 

  • Guan Y (2007b) A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Stat Probab Lett 77: 1722–1729

    Article  MATH  Google Scholar 

  • Hiebeler D (1997) Stochastic spatial models: from simulations to mean field and local structure approximations. J Theor Biol 187(3): 307–319

    Article  Google Scholar 

  • Hiebeler D (2006) Moment equations and dynamics of a household SIS epidemiological model. Bull Math Biol 68(6): 1315–1333

    Article  MathSciNet  Google Scholar 

  • Hillen T (2004) On the L2-moment closure of transport equations: the cattanneo approximation. Discret Continuous Dyn Syst Ser B 4(4): 961–982

    Article  MATH  MathSciNet  Google Scholar 

  • Iwasa Y (2000) Lattice models and pair approximations in ecology. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1.. Cambridge University Press, London, pp 227–251

    Google Scholar 

  • Janossy L (1950) On the absorption of a nucleon cascade. Proc R Ir Acad Sci Sect A 53: 181–188

    MATH  MathSciNet  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106(4): 620–630

    Article  MathSciNet  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum entropy methods. Proc IEEE 70(9): 939–952

    Article  Google Scholar 

  • Keeling M (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond Ser B Biol Sci 266(1421): 859–867

    Article  Google Scholar 

  • Keeling M, Rand D, Morris A (1997) Correlation models for childhood epidemics. Proc R Soc Lond Ser B Biol Sci 264(1385): 1149–1156

    Article  Google Scholar 

  • Keeling M, Wilson H, Pacala S (2000) Reinterpreting space, time lags, and functional responses in ecological models. Science 290(5497): 1758–1761

    Article  Google Scholar 

  • Keeling MJ, Ross JV (2009) Efficient methods for studying stochastic disease and population dynamics. Theor Popul Biol 75(2-3): 133–141

    Article  MATH  Google Scholar 

  • Khinchin AI (1957) Mathematical foundations of information theory. Dover, New York

    MATH  Google Scholar 

  • Kirkwood JG, Boggs EM (1942) The radial distribution function in liquids. J Chem Phys 10: 394–402

    Article  Google Scholar 

  • Krishnarajah I, Cook A, Marion G, Gibson G (2005) Novel moment closure approximations in stochastic epidemics. Bull Math Biol 67(4): 855–873

    Article  MathSciNet  Google Scholar 

  • Law R, Dieckmann U (2000) Moment approximations of individual-based models. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 252–270

    Google Scholar 

  • Law R, Murrell DJ, Dieckmann U (2003) Population growth in space and time: spatial logistic equations. Ecology 84(1): 252–262

    Article  Google Scholar 

  • Levin SA (1994) Patchiness in marine and terrestrial systems: from individuals to populations. Philos Trans R Soc Lond Ser B 3: 99–103

    Article  Google Scholar 

  • Lewis M, Pacala S (2000) Modeling and analysis of stochastic invasion processes. J Math Biol 41(5): 387–429

    Article  MATH  MathSciNet  Google Scholar 

  • McFadden J (1965) The entropy of a point process. J Soc Ind Appl Math 12(4): 988–994

    Article  MathSciNet  Google Scholar 

  • Meeron E (1957) Series expansion of distribution functions in multicomponent fluid systems. J Chem Phys 27(6): 1238–1246

    Article  Google Scholar 

  • Moorcroft PR, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model. Ecol Monogr 71(4): 557–586

    Article  Google Scholar 

  • Murray J (1992) Mathematical Biology. In: Springer series in applied mathematics, vol 85. Springer, Berlin

  • Murray JD (1993) Mathematical biology. In: Biomathematics, vol 19. Springer, Berlin

    Google Scholar 

  • Murrell D, Dieckman U, Law R (2004) On moment closures for population dynamics in continuous space. J Theor Biol 229(3): 421–432

    Article  Google Scholar 

  • Othmer H, Dunbar S, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26: 263–298

    Article  MATH  MathSciNet  Google Scholar 

  • Ovaskainen O, Cornell SJ (2006a) Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor Popul Biol 69: 13–33

    Article  MATH  Google Scholar 

  • Ovaskainen O, Cornell SJ (2006b) Space and stochasticity in population dynamics. Proc Natl Acad Sci 103(34): 12,781–12,786

    Article  Google Scholar 

  • Pacala SW, Levin SA (1997) Biologically generated spatial pattern and the coexistence of competing species. In: Tilman D, Kareiva P (eds) Spatial ecology: the role of space in populations and interspecific interactions. Monographs in population biology, vol. 30, chap. 9. Princeton University Press, New Jersey, pp 204–232

  • Pascual M, Levin SA (1999) From individuals to population densities: searching for the intermediate scale of nontrivial determinism. Ecology 80(7): 2225–2236

    Article  Google Scholar 

  • Pascual M, Mazzega P, Levin S (2001) Oscillatory dynamics and spatial scale: the role of noise and unresolved pattern. Ecology 82(8): 2357–2369

    Article  Google Scholar 

  • Pascual M, Roy M, Franc A (2002) Simple temporal models for ecological systems with complex spatial patterns. Ecol Lett 5(3): 412–419

    Article  Google Scholar 

  • Pearl R, Reed L (1920) On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc Natl Acad Sci 6: 275–288

    Article  Google Scholar 

  • Picard N, Franc A (2001) Aggregation of an individual-based space-dependent model of forest dynamics into distribution-based and space-independent models. Ecol Model 145(1): 69–84

    Article  Google Scholar 

  • Purves DW, Law R (2002) Experimental derivation of functions relating growth of Arabidopsis thaliana to neighbour size and distance. J Ecol 90: 882–894

    Article  Google Scholar 

  • Raghib Moreno M (2006) Point processes in spatial ecology. Ph.D. thesis, Department of Mathematics, University of Glasgow

  • Renshaw E (1991) Modelling biological populations in space and time. In: Cambridge studies in mathematical biology, vol 11. Cambridge University Press, London

  • Salpeter E (1958) On mayers theory of cluster expansion. Ann Phys 5(3): 183–223

    Article  MathSciNet  Google Scholar 

  • Satō K, Iwasa Y (2000) Pair approximations for lattice-based ecological models. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 341–358

    Google Scholar 

  • Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449(7159): 209–212

    Article  Google Scholar 

  • Schneider MK, Law R, Illian JB (2006) Quantification of neighbourhood-dependent plant growth by bayesian hierarchical modelling. J Ecol 94(2): 310–321

    Article  Google Scholar 

  • Scott DW (1992) Multivariate density estimation: theory, practice, and visualization. In: Wiley series in probability and statistics. Wiley, New York

  • Sese L (2005) Triplet correlations in the quantum hard-sphere fluid. J Chem Phys 123(10)

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    MATH  Google Scholar 

  • Silvertown J, Doust JL (1993) Introduction to plant population biology. Blackwell, Oxford

    Google Scholar 

  • Silvertown J, Wilson JB (2000) Spatial interactions among grassland plant populations. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 28–46

    Google Scholar 

  • Singer A (2004) Maximum entropy formulation of the Kirkwood superposition approximation. J Chem Phys 121(8): 3657–3666

    Article  Google Scholar 

  • Stoll P, Weiner J (2000) A neighborhood view of interactions among individual plants. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions. Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 11–27

    Google Scholar 

  • Stoyan D, Helga S (1994) Fractals, random shapes and point fields. Wiley, New York

    MATH  Google Scholar 

  • Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications. In: Wiley series in probability and statistics, 2nd edn. Wiley, New York

  • Turnbull LA, Coomes DA, Purves DW, Rees M (2007) How spatial structure alters population and community dynamics in a natural plant community. J Ecol 95(1): 79–89

    Article  Google Scholar 

  • Van Kampen N (2001) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Verhulst P (1838) Notice sur la loi que la population suit dand son accroissement. Corres Math Phys 10: 113–121

    Google Scholar 

  • Weigelt A, Schumacher J, Walther T, Bartelheimer M, Steinlein T, Beyschlag W (2007) Identifying mechanisms of competition in multi-species communities. J Ecol 95(1): 53–64

    Article  Google Scholar 

  • Wilson HB, Keeling MJ (2000) Spatial scales and low-dimensional deterministic dynamics. In: Dieckmann U, Law R, Metz JA (eds) The geometry of ecological interactions.Cambridge studies in adaptive dynamics, vol 1. Cambridge University Press, London, pp 209–226

    Google Scholar 

  • Young WR, Roberts AJ, Stuhne G (2001) Reproductive pair correlations and the clustering of organisms. Nature 412: 328–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Raghib.

Additional information

M. Raghib is grateful for a postgraduate scholarship from the Principal’s development fund of the University of Glasgow, an overseas student award granted from the Department of Mathematics, University of Glasgow and DARPA (Award ID:HR001-05-1-0057).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghib, M., Hill, N.A. & Dieckmann, U. A multiscale maximum entropy moment closure for locally regulated space–time point process models of population dynamics. J. Math. Biol. 62, 605–653 (2011). https://doi.org/10.1007/s00285-010-0345-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0345-9

Keywords

Mathematics Subject Classification (2000)

Navigation