Skip to main content

Advertisement

Log in

Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host’s survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC’s), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. PNAS 105(47):18343–18348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adam V, Mizuno H, Grichine A, Hotta J, Amagata Y, Moeyaert B, Nienhausf GU, Miyawaki A, Bourgeois D, Hofkens J (2010) Data storage based on photochromic and photoconvertible fluorescent proteins. J Biotechnol 149:289–298

    Article  CAS  PubMed  Google Scholar 

  3. Al-Aribe KM, Knopf GK, Bassi AS (2013) Organic photovoltaic cells based on photoactive bacteriorhodopsin proteins. Proc SPIE. doi:10.1117/12.2004018

    Google Scholar 

  4. Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13(2):427–436

    Article  CAS  PubMed  Google Scholar 

  5. Bae YS, Yang J, Jin S, Lee S, Park CH (1999) Optical CDMA system using bacteriorhodopsin for optical data storage. Biotechnol Prog 15:971–973

    Article  CAS  PubMed  Google Scholar 

  6. Birge RR (1995) Protein based computers. Sci Am 272(3):66–71

    Article  Google Scholar 

  7. Birge RR, Gillespie NB, Izaguirre EW, Kusnetzow A, Lawrence AF, Singh D, Song QW, Schmidt E, Stuart JA, Seetharaman S et al (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103:10746–10766

    Article  CAS  Google Scholar 

  8. Blaurock AE, Stoeckenius W (1971) Structure of the purple membrane. Nat New Biol 233:152–155

    Article  CAS  PubMed  Google Scholar 

  9. Braiman M, Mathies R (1982) Resonance raman spectra of bacteriorhodopsin’s primary photoproduct: evidence for a distorted 13-cis retinal chromophore. Proc Natl Acad Sci 79:403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bregni S, Guerra G, Pattavina A (2001) State of the art of optical switching technology for all-optical networks. WSES Press, Communications World Rhethymo

    Google Scholar 

  11. Chen F, Hou X, Li BF, Jiang L, Hammp N (2000) Optical information storage of bacteriorhodopsin molecule film: experimental study. Mater Sci Eng B 76:76–78

    Article  Google Scholar 

  12. Chen G, Shang X, Yang G, Hao Z, Xu X, Zhang C, Song QW (2009) All-optical continuous-tunable image switch based on nonlinear photoinduced anisotropy in bacteriorhodopsin film. Optik 120:721–725

    Article  CAS  Google Scholar 

  13. Chen G, Zhang C, Shang X, Guo Z, Wang X, Tian J, Song QW (2005) Real-time intensity-dependent all-optical switch of reverse image converter from wavelength to wavelength based on bacteriorhodopsin film. Opt Commun 249:563–568

    Article  CAS  Google Scholar 

  14. Chen Z, Birge RR (1993) Protein based artificial retinas. Trends Biotech 11:292–300

    Article  CAS  Google Scholar 

  15. Chen Z, Govender D, Gross R, Birge R (1995) Advances in protein-based three-dimensional optical memories. Bio Syst 35:145–151

    CAS  Google Scholar 

  16. Clays K, Elshocht SV, Persoons A (2000) Bacteriorhodopsin:a natural (nonlinear) photonic bandgap material. Opt Lett 25(18):1391–1393

    Article  CAS  PubMed  Google Scholar 

  17. Der A, Fabian L, Valkai S, Wolff E, Ramsden J, Ormos P (2006) Integrated optical devices using bacteriorhodopsin as active nonlinear optical material. Proc SPIE 633119:1–8

    Google Scholar 

  18. Ebrey TG (1993) Light energy transduction in bacteriorhodopsin. In: Jackson MB (ed) Thermodynamics of membrane receptors and channels. CRC Press, Boca Raton, pp 353–387

    Google Scholar 

  19. Fabian L, Mathesz A, Der A (2015) New trends in biophotonics. Acta Biol Szegediensis 59(2):189–202

    Google Scholar 

  20. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  PubMed  Google Scholar 

  21. Gratzel M (2003) Dye sensitized solar cell. J Photochem Photobiol C 4:145–153

    Article  CAS  Google Scholar 

  22. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  PubMed  Google Scholar 

  23. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem Rev 100(5):1755–1776

    Article  CAS  PubMed  Google Scholar 

  24. Hampp N (2000) Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material. Appl Microbiol Biotechnol 53:633–639

    Article  CAS  PubMed  Google Scholar 

  25. Hao S, Wu J, Huang Y, Lin J (2006) Natural dyes as photosensitizers for dye-sensitized solar cell. Sol Energy 80:209–214

    Article  CAS  Google Scholar 

  26. Haupts U, Tittor J, Bamberg E, Oesterhelt D (1997) General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochem 36(1):2–7

    Article  CAS  Google Scholar 

  27. Haupts U, Tittor J, Oesterhelt D (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28:367–399

    Article  CAS  PubMed  Google Scholar 

  28. He J, Hagfeldt A, Lindquist SE, Grennberg H, Korodi F, Sun L, Akermark B (2001) Phthalocyanine-sensitized nanostructured TiO2 electrodes prepared by a novel anchoring method. Langmuir 17(9):2743–2747

    Article  CAS  Google Scholar 

  29. Heeg B, Needleman R, Khizhnyak A, L’Esperance D, Scott E, Markov V, Trolinger JD (2003) Bacteriorhodopsin as a chemical and biological sensor. Proc SPIE 5085:109–118

    Article  CAS  Google Scholar 

  30. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213(4):899–929

    Article  CAS  PubMed  Google Scholar 

  31. Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  32. Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, Mehrv J (2014) Efficient bio-nano hybrid solar cells via purple membrane as sensitizer. Bio Nano Sci 4:71–77

    Google Scholar 

  33. Janfaza S, Rad AM, Khayati M, Etemadzadeh A, Jamshidinia Z (2013) Bacteriorhodopsin embedded in gelatin and polyvinyl alcohol films as recording materials for holographic memories. Turk J Biochem 38(4):468–474

    Article  CAS  Google Scholar 

  34. Kalyanasundaram K (2010) Dye-sensitized solar cells. Lausanne, Switzerland

    Google Scholar 

  35. Katoch S, Chaturved A, Pareek S, Deshmukh A (2012) Potential applications of proteins in IT. Int J Comput Appl 3:17–21

  36. Khorana HG (1993) Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsins. Proc Natl Acad Sci USA 90:1166–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khorana HG, Gerber GE, Herlihy WC, Gray CP, Anderegg RJ, Nihei K, Biemann K (1979) Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci USA 76:5046–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koyama K, Yamaguchi N, Miyasaka T (1995) Molecular organization of bacteriorhodopsin films in optoelectronic devices. Adv Mater 7:590–594

    Article  CAS  Google Scholar 

  39. Kuhlbrandt W (2000) Bacteriorhodopsin: the movie news and views. Nature 406:569–570

    Article  CAS  PubMed  Google Scholar 

  40. Kumara NTRN, Ekanayake P, Lim A, Liew LYC, Iskandar M, Ming LC et al (2013) Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. J Alloys Compd 581:186–191

    Article  CAS  Google Scholar 

  41. Lanyi JK, Varo G (1995) The photocycle of bacteriorhodopsin. Isr J Chem 35:365–385

    Article  CAS  Google Scholar 

  42. Legrange J, Cahen D, Roy S (1982) Caplan photoacoustic calorimetry of purple membrane. Biophys J Biophys Soc 37:4–6

    Article  CAS  Google Scholar 

  43. Li CM (2010) Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3.H2O nanocrystals/PVA membrane. Chem Commun 46:689–691

    Article  CAS  Google Scholar 

  44. Li Q, Stuart JA, Birge RR, Xu J, Stickrath A, Bhattacharya P (2004) Photoelectric response of polarization sensitive bacteriorhodopsin films. Biosens Bioelectron 15:869–874

    Article  Google Scholar 

  45. Li R, Li CM, Bao H, Bao Q, Lee VS (2007) Stationary current generated from photocycle of a hybrid bacteriorhodopsin/quantum dot bionanosystem. Appl Phys Lett. doi:10.1063/1.2801521

    Google Scholar 

  46. Lu Z, Wang J, Xiang X, Lid R, Qiao Y, Li CM (2015) Integration of bacteriorhodopsin with upconversion nanoparticles for NIR-triggered photoelectrical response. Chem Commun 51:6373–6376

    Article  CAS  Google Scholar 

  47. Martin JJ, Griep MH, Samuel AG, Victor HG, Santiago R, Bujanda AA, McCauley JE, Karna SP (2012) Tunable TiO2 Nanotube arrays for flexible biosensitized solar cells. Army Res Lab ARL-TR-6075:1–24

  48. Mathesz A, Fbian L, Valkai S, Paulo DA, Marques VS, Ormos P, Wolff EK, Der A (2013) High-speed integrated optical logic based on the protein bacteriorhodopsin. Biosens Bioelectron 46:48–52

    Article  CAS  PubMed  Google Scholar 

  49. Mathies RA, Lin SW, Ames JB, Pollard WT (1991) From femtoseconds to biology: mechanism of bacteriorhodopsin’s light-driven proton pump. Annu Rev Biophys Biophys Chem 20:491–518

    Article  CAS  PubMed  Google Scholar 

  50. Mehrvand J, Vineh MB, Moghaddam NA, Rasoolzadeh R, Molaeirad A (2014) Immobilization of monolayers bacteriorhodopsin on titanium dioxide (TiO2) nanoparticles. Inter J Curr Life Sci 4(8):4467–4471

    Google Scholar 

  51. Mohammadpour R, Janfaza S (2015) Efficient nanostructured biophotovoltaic cell based on bacteriorhodopsin as biophotosensitizer. ACS Sustain Chem Eng 3:809–813

    Article  CAS  Google Scholar 

  52. Molaeirad A, Janfaza S, Karimi-Fard A, Mahyad B (2014) Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode. Biotechnol Appl Biochem 62(1):121–125

    Article  PubMed  Google Scholar 

  53. Nazeeruddin MDK, Humphry-Baker R, Gratzel M, Worle D, Schnurpfeil G, Schneider G, Hirth A, Trombach N (1999) J Porphyrins and Phthalocyanines 3:230–237

    Article  CAS  Google Scholar 

  54. Nazeeruddin MK, Baranoff E, Gratzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178

    Article  CAS  Google Scholar 

  55. Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO (2012) Acquisition of 1000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad Sci 109(50):20537–20542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nelson-Sathi S, Sousa FL, Roettger M, Lozada-Chávez N, Thiergart T, Janssen A, Bryant D, Bryant D, Landan G, Schönheit P, Siebers B, McInerney JO, Martin WF (2015) Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77–80

    Article  CAS  PubMed  Google Scholar 

  57. Neutze R, Peyroula EP, Edman K, Royant A, Navarrod J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    Article  CAS  PubMed  Google Scholar 

  58. NPG asia reserach highlight (2009) doi:10.1038/asiamat.2009.81

  59. O’Regan B, Graetzel MA (1991) Low-cost high efficiency solar cell based on dyesensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  60. Odobel F, Blart E, Lagrée M, Villieras M, Boujtita H, Murr NE, Caramori S, Bignozzi CA (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13(3):502–510

    Article  CAS  Google Scholar 

  61. Oesterhelt D (1976) Bacteriorhodopsin as an example of a light driven proton pump. Angew Chem Int Ed Engl 15:17–24

    Article  CAS  PubMed  Google Scholar 

  62. Oesterhelt D, Hess B (1973) Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem 40:453–463

    Article  CAS  PubMed  Google Scholar 

  63. Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    Article  CAS  PubMed  Google Scholar 

  64. Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ormos P, Fabian L, Oroszi L, Wolff EK, Ramsden JJ, Der A (2002) Protein-based integrated optical switching and modulation. App Phys Lett 80(21):4060–4062

    Article  CAS  Google Scholar 

  66. Ovchinikov YuA, Abdulaev NG, Yu Feigina M, Kiselev AV, Lobanov NA (1979) The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett 100:219–224

    Article  Google Scholar 

  67. Pareek S, Deshmukh A, Gurnani M (2013) Futuristic protein based 3D optical memory. Int J Comput Appl 12:25–29

  68. Pavlenko VA (1990) Gas analysers. Mashinostroenie, Moscow

    Google Scholar 

  69. Pillai AR, Arunachalam B, Shinde M, Henry R (2010) Bacteriorhodopsin and SWCNT Scaffold for optical nanobiosensor. J Life Sci 4(6):60–64

    CAS  Google Scholar 

  70. Psaltis D, Burr GW (1998) Holographic data storage computer. IEEE Comput 31(2):52–60

    Article  Google Scholar 

  71. Rehm JM, McLendon GL, Nagasawa Y, Yoshihara K, Moser J, Gratzel M (1996) J Phys Chem 100(23):9577–9588

    Article  Google Scholar 

  72. Renugopalakrishnan V, Barbiellini B, King C, Molinari M, Mochalov K, Sukhanova A, Nabiev I, Fojan P, Tuller HL, Chin M, Somasundaran P, Padrós E, Ramakrishna S (2014) Engineering a robust photovoltaic device with quantum dots and bacteriorhodopsin. J Phys Chem C 118:16710–16717

    Article  CAS  Google Scholar 

  73. Roy S, Prasad M, Topolancik J, Vollmer F (2010) All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J App Physics 107:1–9

    Google Scholar 

  74. Roy S, Sethi P, Topolancik J, Vollmer F (2012) Alloptical reversible logic gates with optically controlled bacteriorhodopsin proteincoated microresonators. Adv Opt Technol doi:10.1155/2012/727206

  75. Roy S, Sharma P, Dharmadhikari AK, Mathur D (2004) All-optical switching with bacteriorhodopsin. Opt Commun 237:251–256

    Article  CAS  Google Scholar 

  76. Roy S, Singh CP, Reddy KPJ (2002) Analysis of all-optical switching in Bacteriorhodopsin. Curr Sci 83(5):623–627

    CAS  Google Scholar 

  77. Saga Y, Watanabe T, Koyama K, Miyasaka T (1999) Mechanism of photocurrent generation from bacteriorhodopsin on gold electrodes. J Phys Chem B 103(1):234–238

    Article  CAS  Google Scholar 

  78. Sarma SD, Sarma PD (2012) Halophiles. Wiley, New York, pp 1–11

    Google Scholar 

  79. Sharkany JP, Korposha SO, Batori-Tarci ZI, Trikur II, Ramsden JJ (2005) Bacteriorhodopsin-based biochromic films for chemical sensors. Sens Actuat B 107:77–81

    Article  CAS  Google Scholar 

  80. Sharkany YP, Trikur II, Korposha SA, Ramsden JJ (2005) Sensitive elements based on bacteriorhodopsin for fiber-optics sensors of chemical components. Proc SPIE 5855:411–414

    Article  CAS  Google Scholar 

  81. Sharma P (2010) Enhancement of speed of digital operation in bacteriorhodopsin based photonic switch. Optik 121:384–388

    Article  Google Scholar 

  82. Singh CP, Roy S (2003) All-optical logic gates with bacteriorhodopsin. Curr App Phys 3:163–169

    Article  Google Scholar 

  83. Slonczewski J, Foster JW (2011) Microbiology: an evolving science. WW Norton, New York

    Google Scholar 

  84. Stoeckenius W (1980) Purple membrane of halobacteria :a new light energy converter. Accounts on Chem Res 13(10):337–344

  85. Stoeckenius W, Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 52:587–616

    Article  Google Scholar 

  86. Stoeckenius W, Lozier RH, Bogomolni RA (1979) Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta 505:215–278

    Article  CAS  PubMed  Google Scholar 

  87. Stuart JA, Marcy DL, Wise KJ, Birge RR (2002) Volumetric optical memory based on bacteriorhodopsin. Synth Met 127:3–15

    Article  CAS  Google Scholar 

  88. Stuart JA, Tallent RJ, Tan EHL, Birge RR (1996) Protein based volumetric memories. Int’l nonvolatile memory technology conference. doi:10.1109/NVMT.1996.534668

  89. Subramaniam S, Gerstein M, Oesterhelt D, Henderson R (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 12(1):1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tastan O, Dutta A, Booth P, Seetharaman KJ (2014) Retinal proteins as model systems for membrane protein folding. Biochim Biophys Acta 1837(5):656–663

    Article  CAS  PubMed  Google Scholar 

  91. Thavasi V, Lazarova T, Filipek S, Kolinski M, Querol E, Kumar A, Ramakrishna S, Padros E, Renugopalakrishnan V (2008) Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report. J Nanosci Nanotechnol 8:1–9

    Article  Google Scholar 

  92. Tokes SZ, Orzo L, Varo G, Roska T (2000) Bacteriorhodopsin as an analog holographic memory for joint Fourier implementation of CNN computers. Res Rep DNS 3:1–18

    Google Scholar 

  93. Topolancik J, Vollmer F (2007) Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities. Biophys J 92:2223–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Toth-Boconadi R, Der A, Keszthelyi L (2011) Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Bioelectrochem 81:17–21

    Article  CAS  Google Scholar 

  95. Walczak KA, Bergstrom PL, Friedrich CR (2011) Light sensor platform based on the integration of bacteriorhodopsin with a single electron transistor active and passive electronic components. Adv Opt Technol doi:10.1155/2011/586924

  96. Wang X, Matsuda A, Koyama Y, Nagae H, Sasaki S, Tamiaki H et al (2006) Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid. Chem Phys Lett 423:470–475

    Article  CAS  Google Scholar 

  97. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. PNAS 101(45):15905–15910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wise KJ, Gillespie NB, Stuart JA, Krebs MP, Birge RR (2002) Optimization of bacteriorhodopsin for bioelectronic devices. Trends Biotechnol 20:387–394

    Article  CAS  PubMed  Google Scholar 

  99. Xu J, Bhattacharya P, Varo G (2004) Monolithically integrated bacteriorhodopsin/semiconductor optoelectronic integrated circuit for a bio-photoreceiver. Biosen Bioelectron 19:885–892

    Article  CAS  Google Scholar 

  100. Yim KJ, Kwon J, Cha IT, Oh KS, Song HS, Lee HW, Rhee JK, Song E, Rho JR, Seo ML, Choi JS, Choi HJ, Lee SJ, Nam YD, Roh SW (2015) Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingos. Sci Rep. doi:10.1038/srep16425

    Google Scholar 

  101. Zhang D, Lanier SM, Downing JA, Avent JL, Lum J, McHale JL (2008) Betalain pigments for dye-sensitized solar cells. Photochem Photobiol A 195(1):72–80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Ashwini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwini, R., Vijayanand, S. & Hemapriya, J. Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review. Curr Microbiol 74, 996–1002 (2017). https://doi.org/10.1007/s00284-017-1271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1271-5

Navigation