Skip to main content
Log in

A Laboratory Case Study of Efficient Polyhydoxyalkonates Production by Bacillus cereus, a Contaminant in Saccharophagus degradans ATCC 43961 in Minimal Sea Salt Media

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A contaminating bacterium growing along with the stock culture of Saccharophagus degradans ATCC 43961 (Sde 2-40) on marine agar plate was isolated and investigated for its ability to produce polyhydoxyalkonates (PHA). Preliminary screening by Sudan black B and Nile blue A staining indicated positive characteristic of the isolate to produce PHA. The isolate was able to grow and produce PHA in minimal sea salt medium broth. PHA quantification studies with gas chromatographic analyses of the dry cells derived from culture broths revealed accumulation of PHA in bacterial cells. PHA production started after 20 h and increased with cell growth and attained maximum values of 61 % of dry cell weight at 70 h of cultivation. After 70 h, a slight decrease in the level of PHA content was observed. The nature/type of PHA was found to be poly(3-hydroxybutyraye) by Fourier transform-infrared spectroscopy. Microbiological and 16S rRNA gene sequencing analyses suggested that the PHA producing bacterial isolate belongs to Bacillus genera and shows 100 % nucleotide sequence similarity with Bacillus cereus species in GenBank. This study is a first report for ability of Bacillus species to grow in marine sea salt media and produce PHA. The media used for the polymer production was novel in the context of the genus Bacillus and the production of PHA was three-fold higher than Sde 2-40 using same growth medium. This study shows that the contaminant bacteria once properly investigated can be used for advantageous characteristic of metabolites production in place of original cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of polyhydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    Article  PubMed  CAS  Google Scholar 

  2. Bottone EJ (2010) Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev 23:382–398

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burdon KL (1946) Fatty materials in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–678

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273

    Article  CAS  Google Scholar 

  5. Chen GQ, König KH, Lafferty RM (1991) Occurrence of poly-d(−)-3-hydroxyalkanoates in the genus Bacillus. FEMS Microbiol Lett 84:173–176

    CAS  Google Scholar 

  6. De Lima TCS, Grisi BM, Bonato MCM (1999) Bacteria isolated from a sugarcane agroecosystem: their potential production of polyhydroxyalcanoates and resistance to antibiotics. Rev Microbiol 30:214–224

    Article  Google Scholar 

  7. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549

    Article  PubMed  CAS  Google Scholar 

  8. Ekborg N, Taylor LE, Weiner R, Hutcheson S (2006) Genomic and proteomic analysis of the agarolytic system of Saccharophagus degradans strain 2-40. Appl Environ Microbiol 72:3396–3405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ensor L, Stotz SK, Weiner RM (1999) Expression of multiple insoluble complex polysaccharide degrading enzyme systems by a marine bacterium. J Ind Microbiol Biotechnol 23:123–126

    Article  PubMed  CAS  Google Scholar 

  10. Fogh J, Holmgren NB, Ludovici PO (1971) A review of cell culture contaminants. In Vitro 7:26–41

    Article  PubMed  CAS  Google Scholar 

  11. Gonzalez JM, Weiner RM (2000) Phylogenetic characterization of marine bacterium strain 2-40, a degrader of complex polysaccharides. Int J Syst Evol Microbiol 50:831–834

    Article  PubMed  Google Scholar 

  12. González-García Y, Nungaray J, Córdova J, González-Reynoso O, Koller M, Atlic A, Braunegg G (2008) Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol 35:629–633

    Article  PubMed  Google Scholar 

  13. González-García Y, Rosales MA, González-Reynoso O, Sanjuán-Dueñas R, Córdova J (2011) Polyhydroxybutyrate production by Saccharophagus degradans using raw starch as carbon source. Eng Life Sci 11:59–64

    Article  Google Scholar 

  14. Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Appl Microbiol Biotechnol 51:523–526

    Article  CAS  Google Scholar 

  15. Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW (2003) Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40. J Bacteriol 185:3352–3360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kansiz M, Billman-Jacobe H, McNaughton D (2000) Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl Environ Microbiol 66:3415–3420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  18. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  PubMed  CAS  Google Scholar 

  19. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  20. Mizuno K, Ohta A, Hyakutake M, Ichinomiya Y, Tsuge T (2010) Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym Degrad Stab 95:1335–1339

    Article  CAS  Google Scholar 

  21. Munoz A, Esteban L, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100:882–888

    Article  CAS  Google Scholar 

  22. Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–405

    Article  CAS  Google Scholar 

  23. Ostle AG, Holt JG (1982) Nile Blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Patil SV, Salunkhe RB, Patil CD, Patil DM, Salunke BK (2010) Bioflocculant exopolysaccharide production by Azotobacter indicus using flower extract of Madhuca latifolia L. Appl Biochem Biotechnol 162:1095–1108

    Article  PubMed  CAS  Google Scholar 

  25. Patil SV, Patil CD, Salunke BK, Salunkhe RB, Bathe GA, Patil DM (2011) Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment. Appl Biochem Biotechnol 163:463–472

    Article  PubMed  CAS  Google Scholar 

  26. Ryan JA (1994) Understanding and managing cell culture contamination. Corning Technical Bulletin. http://catalog2.corning.com/Lifesciences/media/pdf/cccontamination.pdf. Accessed 28 April 2014

  27. Shin MH, Lee DY, Skogerson K, Wohlgemuth G, Choi IG, Fiehn O, Kim KH (2010) Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans. Biotechnol Bioeng 105:477–488

    Article  PubMed  CAS  Google Scholar 

  28. Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Thirumala M, Reddy SV, Mahmood SK (2010) Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. J Ind Microbiol Biotechnol 37:271–278

    Article  PubMed  CAS  Google Scholar 

  30. Valappil SP, Rai R, Bucke C, Roy I (2008) Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104:1624–1635

    Article  PubMed  CAS  Google Scholar 

  31. Weiner R, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40. PLoS Genet 4:e1000087

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yilmaz M, Haluk S, Yavuz B (2005) Determination of poly-β hydroxybutyrate (PHB) production by some Bacillus spp. World J Microbiol Biotechnol 21:565–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2013R1A2A2A01067117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, S.S., Salunke, B.K. & Kim, B.S. A Laboratory Case Study of Efficient Polyhydoxyalkonates Production by Bacillus cereus, a Contaminant in Saccharophagus degradans ATCC 43961 in Minimal Sea Salt Media. Curr Microbiol 69, 832–838 (2014). https://doi.org/10.1007/s00284-014-0664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0664-y

Keywords

Navigation