Skip to main content
Log in

Adenosine Monophosphate Affects Competence Development and Plasmid DNA Transformation in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Artificial plasmid DNA transformation of Escherichia coli induced by calcium chloride is a routine technique in molecular biology and genetic engineering processes, but its mechanism has remained elusive. Because adenosine monophosphate (AMP) has been found to regulate natural transformation in Haemophilus influenza, we aimed to investigate the effects of AMP and its derivatives on E. coli transformation by treating competence with different concentrations of them. Analysis of the transformation efficiencies revealed that AMP inhibited the artificial plasmid DNA transformation of E. coli in a concentration- and time-dependent manner. Furthermore, we found that AMP had no effect on the expression of the transformed gene but that the intracellular AMP level of the competent cells rose after a 6 h treatment. These results suggested that the intracellular AMP level had an important role in E. coli transformation. And these have useful implications for the further investigation of the mechanism of E. coli transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242:3239–3241

    PubMed  CAS  Google Scholar 

  2. Baur B, Hanselmann K, Schlimme W, Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62:3673–3678

    PubMed  CAS  Google Scholar 

  3. Bocquet-Pages C, Lazdunski C, Lazdunski A (1981) Lipid-synthesis-dependent biosynthesis (or assembly) of major outer-membrane proteins of Escherichia coli. Eur J Biochem 118:105–111

    Article  PubMed  CAS  Google Scholar 

  4. Bukau B, Brass JM, Boos W (1985) Ca2+-induced permeabilization of the Escherichia coli outer membrane: comparison of transformation and reconstitution of binding-protein-dependent transport. J Bacteriol 163:61–68

    PubMed  CAS  Google Scholar 

  5. Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086

    PubMed  CAS  Google Scholar 

  6. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Article  PubMed  CAS  Google Scholar 

  7. Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183:6288–6293

    Article  PubMed  CAS  Google Scholar 

  8. Fischer E (1989) Osmolability of Escherichia coli and modification of [125I] ampicillin-binding by competence induction for uptake of transforming DNA. Arch Microbiol 153:43–46

    Article  PubMed  CAS  Google Scholar 

  9. Franzen JS, Binkley SB (1961) Comparison of the acid-soluble nucleotides in Escherichia coli at different growth rates. J Biol Chem 236:515–519

    PubMed  CAS  Google Scholar 

  10. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  11. Hochstadt-Ozer J (1972) The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes. J Biol Chem 247:2419–2426

    PubMed  CAS  Google Scholar 

  12. Huang R, Reusch RN (1995) Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. J Bacteriol 177:486–490

    PubMed  CAS  Google Scholar 

  13. Li H, Gao Y, Jiang L, Zheng F, Wang M (2010) Impacts of petroleum pollutants on rape biomass, microbial population and the petroleum pollutants residue in soil. Chin Agric Sci Bulletin 26:382–385

    Article  Google Scholar 

  14. Li W, Xie H, Xie Z, Lu Z, Ou J, Chen X, Shen P (2004) Exploring the mechanism of competence development in Escherichia coli using quantum dots as fluorescent probes. J Biochem Biophys Methods 58:59–66

    Article  PubMed  CAS  Google Scholar 

  15. Li W, Xie Z, Guo P, Chen X, Shen P (2001) Escherichia coli absorbing external-DNA under condition of lower Ca2+ concentration. J Wuhan Univ 2:247–250

    Google Scholar 

  16. Lin Z, Liu C, Wang H, He H (2009) The effects of soil microbe and soil enzyme activity after treated by different concentration pretilachlor. Acad Period of Farm Prod Process 9:10–15

    CAS  Google Scholar 

  17. MacFadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ (2001) Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40:700–707

    Article  PubMed  CAS  Google Scholar 

  18. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Article  PubMed  CAS  Google Scholar 

  19. Morrison BA, Shain DH (2008) An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance. Biol Lett 4:53–56

    Article  PubMed  CAS  Google Scholar 

  20. Palchevskiy V, Finkel SE (2006) Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol 188:3902–3910

    Article  PubMed  CAS  Google Scholar 

  21. Panja S, Saha S, Jana B, Basu T (2006) Role of membrane potential on artificial transformation of E. coli with plasmid DNA. J Biotechnol 127:14–20

    Article  PubMed  CAS  Google Scholar 

  22. Patterson G, Day RN, Piston D (2001) Fluorescent protein spectra. J Cell Sci 114:837–838

    PubMed  CAS  Google Scholar 

  23. Redfield RJ (1993) Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J Hered 84:400–404

    PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Sun D, Zhang Y, Mei Y, Jiang H, Xie Z, Liu H, Chen X, Shen P (2006) Escherichia coli is naturally transformable in a novel transformation system. FEMS Microbiol Lett 265:249–255

    Article  PubMed  CAS  Google Scholar 

  26. Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456:891–897

    Article  PubMed  CAS  Google Scholar 

  27. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182:6482–6489

    Article  PubMed  CAS  Google Scholar 

  28. Wang Z, Xiang L, Shao J, Wegrzyn G (2007) Adenosine monophosphate-induced amplification of ColE1 plasmid DNA in Escherichia coli. Plasmid 57:265–274

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe K, Tomioka S, Tanimura K, Oku H, Isoi K (2011) Uptake of AMP, ADP, and ATP in Escherichia coli W. Biosci Biotechnol Biochem 75:7–12

    Article  PubMed  CAS  Google Scholar 

  30. Wenhua L, Haiyan X, Zhixiong X, Jianhong O, Xiangdong C, Ping S (2004) Exploring permeability of Escherichia coli competence using quantum dots as fluorescent probes. J Biochem Biophys Methods 61:265–270

    Article  PubMed  Google Scholar 

  31. Xi H, Schneider BL, Reitzer L (2000) Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182:5332–5341

    Article  PubMed  CAS  Google Scholar 

  32. Xie Z, Liu Y, Chen X, Shen P, Qu S (2000) Thermochemical studies on the competence development of Escherichia coli HBl01. Acta Chim Sin 58:153–156

    CAS  Google Scholar 

  33. Yagil E, Beacham IR (1975) Uptake of adenosine 5′-monophosphate by Escherichia coli. J Bacteriol 121:401–405

    PubMed  CAS  Google Scholar 

  34. Zheng H, Liu W, Anderson LY, Jiang QX (2011) Lipid-dependent gating of a voltage-gated potassium channel. Nat Commun 2:250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant nos. 30971573 and 81072151), Distinguished Youth Foundation of Hubei Province of China (2012FFA019) and the Science Fund for Creative Research Groups of the NSFC (no. 20921062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, W., Wang, L. et al. Adenosine Monophosphate Affects Competence Development and Plasmid DNA Transformation in Escherichia coli . Curr Microbiol 67, 550–556 (2013). https://doi.org/10.1007/s00284-013-0400-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0400-z

Keywords

Navigation