Skip to main content
Log in

Characterisation of Two Bifunctional Cellulase–Xylanase Enzymes Isolated from a Bovine Rumen Metagenome Library

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ruminant digestive tract microbes hydrolyse plant biomass, and the application of metagenomic techniques can provide good coverage of their glycosyl hydrolase enzymes. A metagenomic library of circa 70,000 fosmids was constructed from bacterial DNA isolated from bovine rumen and subsequently screened for cellulose hydrolysing activities on a CMC agar medium. Two clones were selected based on large clearance zones on the CMC agar plates. Following nucleotide sequencing, translational analysis and homology searches, two cellulase encoding genes (cel5A and cel5B) belonging to the glycosyl hydrolyse family 5 were identified. Both genes encoded pre-proteins of about 62 kDa, containing signal leader peptides which could be cleaved to form mature proteins of about 60 kDa. Biochemical characterisation revealed that both enzymes showed alkaline pH optima of 9.0 and the temperature optima of 65 °C. Substrate specificity profiling of the two enzymes using 1,4-β-d-cello- and xylo-oligosaccharides revealed preference for longer oligosaccharides (n ≥ 3) for both enzymes, suggesting that they are endo-cellulases/xylanases. The bifunctional properties of the two identified enzymes render them potentially useful in degrading the β-1,4 bonds of both the cellulose and hemicellulose polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TS, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids. Res. 25:3389–3402. GenBank (http://www.ncbi.nlm.nih.gov/)

  2. Arato C, Pye EK, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 121–124:871–882

    Article  PubMed  Google Scholar 

  3. Bendten JD, Nielsen H, von Heijnie G, Brunak S (2004) Improved prediction of signal peptide: SignalP 3.0. J Mol Biol 340:783–795. http://www.cbs.dtu.dk/services/SignalP/

    Google Scholar 

  4. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  PubMed  CAS  Google Scholar 

  5. Biely P, Vrsanska M, Claeyssens M (1991) The endo-1,4-β-glucanase I from Trichoderma reesei. Action on β-1,4-oligomers and polymers derived from d-glucose and d-xylose. Eur J Biochem 200:157–163

    Article  PubMed  CAS  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  7. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  8. Chang L, Ding M, Bao L, Chen Y, Zhou J, Lu H (2011) Characterisation of a bifunctional xylanase/endoglucanase from yak rumen microorganism. Appl Microbiol Biotechnol 90:1933–1942

    Article  PubMed  CAS  Google Scholar 

  9. Claeyssens M, Van Tilbeurgh H, Kamerling JP, Berg J, Vrsanska M, Biely P (1990) Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Substrate specificity and transfer activity of endoglucanase I. Biochem J 270:251–256

    PubMed  CAS  Google Scholar 

  10. Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PCE, Sullivan PA, Cutfield JF (1999) The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: Relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol 294:771–783

    Article  PubMed  CAS  Google Scholar 

  11. Duan C, Xian L, Zhao G, Feng Y, Pang H, Bai X, Tang J, Ma Q, Feng J (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256

    Article  PubMed  CAS  Google Scholar 

  12. Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe H, Belaich J, Davies GJ, Haser R (1995) Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3:939–949

    Article  PubMed  CAS  Google Scholar 

  13. Eggleston G (2007) Advances in the industrial application of enzymes on carbohydrate-based materials. In: Eggleston G, Vercellotti JR (eds) Industrial application of enzymes on carbohydrate-based material, ACS Symposium Series. American Chemical Society, Washington, DC, pp 1–16

  14. Eneyskaya EV, Brumer H III, Backinowsky LV, Ivanen DR, Kulminskaya AA, Shabalin KA, Neustroev KN (2003) Enzymatic synthesis of β-xylanase substrates: transglycosylation reactions of the β-xylosidase from Aspergillus sp. Carbohydrate Res 338:313–325

    Article  CAS  Google Scholar 

  15. Gilliespie DE, Rondon MR, Goodman RM, Handelsman J, Williamson LL (2005) Metagenomic library from uncultured microorganisms. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor and Francis Group, New York, pp 261–279

    Google Scholar 

  16. Juturu V, Wu JC (2011) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.11.006

  17. Khandaparker R, Numan MT (2008) Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35:635–644

    Article  Google Scholar 

  18. Lorenz P, Liebeton K, Niehaus F, Eck K (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  PubMed  CAS  Google Scholar 

  19. Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  21. Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  PubMed  CAS  Google Scholar 

  22. Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675

    Article  PubMed  CAS  Google Scholar 

  23. Rantwijk FV, Oosterom W, Sheldon RA (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B 6:511–532

    Article  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day A (2002) A novel combination of two classic catalytic schemes. J Mol Biol 320:303–309

    Article  PubMed  CAS  Google Scholar 

  26. Wang F, Li F, Chen G, Liu W (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–657

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance of the CSIR Thematic Fund and the Tshwane University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Brady.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashamuse, K.J., Visser, D.F., Hennessy, F. et al. Characterisation of Two Bifunctional Cellulase–Xylanase Enzymes Isolated from a Bovine Rumen Metagenome Library. Curr Microbiol 66, 145–151 (2013). https://doi.org/10.1007/s00284-012-0251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0251-z

Keywords

Navigation