Skip to main content
Log in

Characterization of a T7-Like Lytic Bacteriophage of Klebsiella pneumoniae B5055: A Potential Therapeutic Agent

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Characterization of bacteriophages to be used prophylactically or therapeutically is mandatory, as use of uncharacterized bacteriophages is considered as one of the major reasons of failure of phage therapy in preantibiotic era. In the present study, one lytic bacteriophage, KPO1K2, specific for Klebsiella pneumoniae B5055, with broad host range was selected for characterization. As shown by TEM, morphologically KPO1K2 possessed icosahedral head with pentagonal nature with apex to apex head diameter of about 39 nm. Presence of short noncontractile tail (10 nm) suggested its inclusion into family Podoviridae with a designation of T7-like lytic bacteriophage. The phage growth cycle with a latent period of 15 min and a burst size of approximately 140 plaque forming units per infected cell as well as a genome of 42 kbps and structural protein pattern of this bacteriophage further confirmed its T7-like characteristics. Phage was stable over a wide pH range of 4–11 and demonstrated maximum activity at 37°C. After injection into mice, at 6 h, a high phage titer was seen in blood as well as in kidney and urinary bladder, though titers in kidney and urinary bladder were higher as compared to blood. Phage got cleared completely in 36 h from blood while from kidneys and urinary bladder its clearance was delayed. We propose the use of this characterized phage, KPO1K2, as a prophylactic/therapeutic agent especially for the treatment of catheter associated UTI caused by Klebsiella pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackermann H-W (2005) Bacteriophage classification. In: Kutter E, Sulakvelidze A (eds) Bacteriophages biology, applications. CRC Press, Boca Raton

    Google Scholar 

  2. Ackermann H-W, Dubow MS, Jarvis AW et al (1992) The species concept and its application to tailed phages. Arch Viol 124:69–82

    Article  CAS  Google Scholar 

  3. Adams MH (1959) Bacteriophages. Interscience, New York

    Google Scholar 

  4. Ashelford KE, Norris SJ, Fry JC et al (2000) Seasonal population dynamics and interactions of competing bacteriophages and their host in the rhizosphere. Appl Environ Microbiol 66:4193–4199

    Article  PubMed  CAS  Google Scholar 

  5. Ausubel F, Brent R, Kingston RE et al (2001) Current protocols in molecular biology. Wiley and Sons, NY, New York

    Book  Google Scholar 

  6. Bedi MS, Verma V, Chhibber S (2009) Amoxicillin and specific bacteriophage can be used together for the eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol (Accepted for publication). doi: 10.1007/s11274-009-9991-8

  7. Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  PubMed  CAS  Google Scholar 

  8. Casjens SR (2008) Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol 159(2008):340–348

    Article  PubMed  CAS  Google Scholar 

  9. Cerveny KE, DePaola A, Duckworth DH, Gulig PA (2002) Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun 70(11):6251–6262

    Article  PubMed  CAS  Google Scholar 

  10. Chhibber S, Kaur S, Kumari S (2008) Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57:1508–1513

    Article  PubMed  Google Scholar 

  11. Comeau AM, Tétart F, Trojet SN, Pre`re M-F, Krisch HM (2007) Phage-Antibiotic Synergy (PAS): b-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2(8):e799. doi:10.1371/journal.pone.0000799

    Article  PubMed  Google Scholar 

  12. Danese PN (2002) Antibiofilm approaches: review prevention of catheter colonization. Chem Biol 9:873–880

    Article  PubMed  CAS  Google Scholar 

  13. Geyer H, Himmelspach K, Kwiatkowski B et al (1983) Degradation of bacterial surface carbohydrates by virus-associated enzymes. Pure Appl Chem 55:637–653

    Article  CAS  Google Scholar 

  14. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11(1):160–167

    Article  PubMed  CAS  Google Scholar 

  15. Goodridge L, Gallaccio A, Griffiths MW (2003) Morphological, host range, and genetic characterization of two coliphages. Appl Environ Microbiol 69(9):5364–5371

    Article  PubMed  CAS  Google Scholar 

  16. Gorski A, Weber-Dąbrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62:511–519

    Article  PubMed  CAS  Google Scholar 

  17. Hendrix RW (2002) Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480

    Article  PubMed  Google Scholar 

  18. Holloway BW, Krishnapillai V, Morgan AF (1970) Chromosomal genetics of Pseudomonas. Microbiol Rev 43(1):73–102

    Google Scholar 

  19. Johnson JR, Kuskowski MA, Wilt TJ (2006) Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 144(2):117–126

    Google Scholar 

  20. Kumari S, Harjai K, Chhibber S (2008) Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol (published online December). doi:10.4014/jmb.0808.493

  21. Kutter E, Sulakvelidze A (2005) Bacteriophages biology and applications. CRC Press, Boca Raton

    Google Scholar 

  22. Lavigne R, Burkal’tseva MV, Robben J et al (2003) The genome of bacteriophage phi KMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

    Article  PubMed  CAS  Google Scholar 

  23. Maniatis T, Sambrook J, Fritsch EF (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  24. Miedzybrodzki R, Switala-Jelen K, Fortuna W et al (2008) Bacteriophage inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res 131:233–242

    Article  PubMed  CAS  Google Scholar 

  25. Pajunen M, Kiljunen S, Skurnik M et al (2000) Bacteriophage phi YeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182:5114–5120

    Article  PubMed  CAS  Google Scholar 

  26. Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75(6):2509–2515

    Article  PubMed  CAS  Google Scholar 

  27. Sillankorva S, Neubauer P, Azeredo J (2008) Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol 8:59–70

    Article  Google Scholar 

  28. Sutherland IW (2001) Biofilm polysaccharide: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  29. Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    Article  PubMed  CAS  Google Scholar 

  30. Vinodkumar CS, Neelagund YF, Kalsurmath S (2005) Bacteriophage in the treatment of experimental septicaemia mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 37:18–29

    PubMed  CAS  Google Scholar 

  31. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679

    Article  PubMed  CAS  Google Scholar 

  32. Weld R (2000) Bacteriophage on the menu. Pharm Sci Technol Today 3(12):404–405

    Article  Google Scholar 

  33. Yamamoto KR, Alberts BM, Benzinger R et al (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Indian Council of Medical Research (ICMR). We also thank Dr. Rupinder Tiwari for the facilities used in his laboratory pertaining to restriction digestion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Chhibber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, V., Harjai, K. & Chhibber, S. Characterization of a T7-Like Lytic Bacteriophage of Klebsiella pneumoniae B5055: A Potential Therapeutic Agent. Curr Microbiol 59, 274–281 (2009). https://doi.org/10.1007/s00284-009-9430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9430-y

Keywords

Navigation