Skip to main content

Advertisement

Log in

Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

High-dose methotrexate (HD-MTX) courses with concurrent oral low-dose MTX/6-mercaptopurine (6MP) for childhood acute lymphoblastic leukaemia (ALL) are often followed by neutro- and thrombocytopenia necessitating treatment interruptions. Plasma MTX during HD-MTX therapy guides folinic acid rescue to prevent toxicities, but myelosuppression can also be prevented by pre-HD-MTX 6MP dose reductions. Accordingly, we monitored pre-HD-MTX erythrocyte levels of methylated 6MP metabolites (Ery-MeMP) and of thioguanine nucleotides (Ery-6TGN) as well as DNA-incorporated thioguanine nucleotides (DNA-TGN) in circulating leucocytes to identify patients at highest risk of post-HD-MTX myelosuppression. In multiple linear regression analyses of neutrophil and thrombocyte nadir values (adjusted for gender, age, risk group and 6MP dose) after 48 HD-MTX courses in 17 childhood ALL patients on MTX/6MP maintenance therapy, the pre-HD-MTX DNA-TGN levels in neutrophils (P < 0.0001), Ery-MeMP (P < 0.0001) and Ery-6TGN (P = 0.01) levels were significant predictors of post-HD-MTX neutrophil nadirs, whereas Ery-MeMP (P < 0.0001) was the only predictor of post-HD-MTX thrombocyte nadir. In conclusion, pre-HD-MTX 6MP metabolite levels may be applicable for 6MP dose adjustments to prevent HD-MTX-induced myelosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Schmiegelow K, Forestier E, Hellebostad M, Heyman M, Kristinsson J, Soderhall S et al (2010) Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia 24(2):345–354

    Article  CAS  PubMed  Google Scholar 

  2. Lund B, Wesolowska-Andersen A, Lausen B, Borst L, Rasmussen KK, Muller K et al. (2013) Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia. Eur J Haematol 92(4):321–330

    Article  Google Scholar 

  3. Nersting J, Borst L, Schmiegelow K (2011) Challenges in implementing individualized medicine illustrated by antimetabolite therapy of childhood acute lymphoblastic leukemia. Clin Proteomics 8(1):8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Frandsen TL, Abrahamsson J, Lausen B, Vettenranta K, Heyman M, Behrentz M et al (2011) Individualized toxicity-titrated 6-mercaptopurine increments during high-dose methotrexate consolidation treatment of lower risk childhood acute lymphoblastic leukaemia. A Nordic Society of Paediatric Haematology and Oncology (NOPHO) pilot study. Br J Haematol 155(2):244–247

    Article  CAS  PubMed  Google Scholar 

  5. Nygaard U, Schmiegelow K (2003) Dose reduction of coadministered 6-mercaptopurine decreases myelotoxicity following high-dose methotrexate in childhood leukemia. Leukemia 17(7):1344–1348

    Article  CAS  PubMed  Google Scholar 

  6. Innocenti F, Danesi R, Di PA, Loru B, Favre C, Nardi M et al (1996) Clinical and experimental pharmacokinetic interaction between 6-mercaptopurine and methotrexate. Cancer Chemother Pharmacol 37(5):409–414

    Article  CAS  PubMed  Google Scholar 

  7. Schmiegelow K, Nielsen SN, Frandsen TL, Nersting J (2014) Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol 36(7):503–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Levinsen M, Rosthoj S, Nygaard U, Heldrup J, Harila-Saari A, Jonsson OG et al. (2014) Myelotoxicity after high-dose methotrexate in childhood acute leukemia is influenced by 6-mercaptopurine dosing but not by intermediate thiopurine methyltransferase activity. Cancer Chemother Pharmacol 75(1):59–66

    Article  PubMed  Google Scholar 

  9. Schmiegelow K, Bretton-Meyer U (2001) 6-Mercaptopurine dosage and pharmacokinetics influence the degree of bone marrow toxicity following high-dose methotrexate in children with acute lymphoblastic leukemia. Leukemia 15(1):74–79

    Article  CAS  PubMed  Google Scholar 

  10. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE (1999) Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 93(9):2817–2823

    CAS  PubMed  Google Scholar 

  11. Lilleyman JS, Lennard L (1994) Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 343(8907):1188–1190

    Article  CAS  PubMed  Google Scholar 

  12. Bokkerink JP, Bakker MA, Hulscher TW, De Abreu RA, Schretlen ED (1988) Purine de novo synthesis as the basis of synergism of methotrexate and 6-mercaptopurine in human malignant lymphoblasts of different lineages. Biochem Pharmacol 37(12):2321–2327

    Article  CAS  PubMed  Google Scholar 

  13. Karran P, Attard N (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8(1):24–36

    Article  CAS  PubMed  Google Scholar 

  14. Ebbesen MS, Nersting J, Jacobsen JH, Frandsen TL, Vettenranta K, Abramsson J et al (2013) Incorporation of 6-thioguanine nucleotides into DNA during maintenance therapy of childhood acute lymphoblastic leukemia-the influence of thiopurine methyltransferase genotypes. J Clin Pharmacol 53(6):670–674

    Article  CAS  PubMed  Google Scholar 

  15. Toft N, Birgens H, Abrahamsson J, Bernell P, Griskevicius L, Hallbook H et al (2013) Risk group assignment differs for children and adults 1–45 yr with acute lymphoblastic leukemia treated by the NOPHO ALL-2008 protocol. Eur J Haematol 90(5):404–412

    Article  PubMed  Google Scholar 

  16. Dervieux T, Boulieu R (1998) Simultaneous determination of 6-thioguanine and methyl 6-mercaptopurine nucleotides of azathioprine in red blood cells by HPLC. Clin Chem 44(3):551–555

    CAS  PubMed  Google Scholar 

  17. Jacobsen JH, Schmiegelow K, Nersting J (2012) Liquid chromatography–tandem mass spectrometry quantification of 6-thioguanine in DNA using endogenous guanine as internal standard. J Chromatogr B Anal Technol Biomed Life Sci 15(881–882):115–118

    Article  Google Scholar 

  18. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42(1):121–130

    Article  CAS  PubMed  Google Scholar 

  19. Skarby TV, Anderson H, Heldrup J, Kanerva JA, Seidel H, Schmiegelow K (2006) High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia 20(11):1955–1962

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Danish Cancer Society, the Nordic Cancer Union, the Danish childhood cancer foundation and the Swedish childhood cancer foundation.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjeld Schmiegelow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vang, S.I., Schmiegelow, K., Frandsen, T. et al. Mercaptopurine metabolite levels are predictors of bone marrow toxicity following high-dose methotrexate therapy of childhood acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 75, 1089–1093 (2015). https://doi.org/10.1007/s00280-015-2717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2717-8

Keywords

Navigation