Skip to main content

Advertisement

Log in

Population pharmacokinetics of HM781-36 (poziotinib), pan-human EGF receptor (HER) inhibitor, and its two metabolites in patients with advanced solid malignancies

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To develop a population pharmacokinetic (PK) model for HM781-36 (poziotinib) and its metabolites in cancer patients.

Methods

Blood samples were collected from three phase I studies in which fifty-two patients received oral HM781-36B tablets (0.5–32 mg) once daily for 2 weeks, and another 20 patients received oral HM781-36B tablets (12, 16, 18, 24 mg) in fasting (12 patients) or fed (eight patients) state once daily for 4 weeks. Nonlinear mixed effect modeling was employed to develop the population pharmacokinetic model.

Results

HM781-36 PK was ascribed to a two-compartment model and HM781-36-M1/-M2 PK to one-compartment model. HM781-36 oral absorption was characterized by first-order input (absorption rate constant: 1.45 ± 0.23 h−1). The central volume of distribution (185 ± 12.7 L) was influenced significantly by body weight. The absorption rate constant was influenced by food. The typical HM781-36 apparent clearance was 34.5 L/h (29.4 %CV), with an apparent peripheral volume of distribution of 164 L (53.5 %CV). Other covariates did not significantly further explain the PKs of HM781-36.

Conclusions

The proposed model suggests that HM781-36 PKs are consistent across most solid tumor types, and that the absorption process of HM781-36 is affected by the fed state before dosing. HM781-36 PKs are not complicated by patient factors, other than body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31(6):637–643

    Article  CAS  PubMed  Google Scholar 

  2. Ritter CA, Arteaga CL (2003) The epidermal growth factor receptor-tyrosine kinase: a promising therapeutic target in solid tumors. Semin Oncol 30(1 Suppl 1):3–11

    Article  CAS  PubMed  Google Scholar 

  3. Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28(5):481–504

    Article  CAS  PubMed  Google Scholar 

  4. Beal SL, Sheiner LB, Boeckmann AJ (1989) 2006 NONMEM Users Guide: Part I-VII. Icon Development Solutions, Ellicott City

    Google Scholar 

  5. Keizer RJ, Karlsson MO, Hooker A (2013) Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacomet Syst Pharmacol 2:e50

    Article  CAS  Google Scholar 

  6. Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79(3):241–257

    Article  PubMed  Google Scholar 

  7. Bergstrand M et al (2011) Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13(2):143–151

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jonsson EN, Karlsson MO (1999) Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58(1):51–64

    Article  CAS  PubMed  Google Scholar 

  9. Ette EI (1997) Stability and performance of a population pharmacokinetic model. J Clin Pharmacol 37(6):486–495

    Article  CAS  PubMed  Google Scholar 

  10. Ette EI, Onyiah LC (2002) Estimating inestimable standard errors in population pharmacokinetic studies: the bootstrap with Winsorization. Eur J Drug Metab Pharmacokinet 27(3):213–224

    Article  CAS  PubMed  Google Scholar 

  11. Parke J, Holford NH, Charles BG (1999) A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 59(1):19–29

    Article  CAS  PubMed  Google Scholar 

  12. Yano Y, Beal SL, Sheiner LB (2001) Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 28(2):171–192

    Article  CAS  PubMed  Google Scholar 

  13. Smith BP et al (2000) Confidence interval criteria for assessment of dose proportionality. Pharm Res 17(10):1278–1283

    Article  CAS  PubMed  Google Scholar 

  14. Scheffler M et al (2011) Clinical pharmacokinetics of tyrosine kinase inhibitors: focus on 4-anilinoquinazolines. Clin Pharmacokinet 50(6):371–403

    Article  CAS  PubMed  Google Scholar 

  15. Bello CL et al (2013) A phase I, open-label, mass balance study of [(14)C] dacomitinib (PF-00299804) in healthy male volunteers. Cancer Chemother Pharmacol 72(2):379–385

    Article  CAS  PubMed  Google Scholar 

  16. Karlsson MO, Sheiner LB (1993) The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm 21(6):735–750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Hanmi Pharm., Co. Ltd., Seoul, Korea. The authors are grateful to the Clinical Research, Drug Metabolism and Pharmacokinetics, and Chemical Structure Analysis teams of Hanmi Pharm.

Conflict of interest

Jin-A Jung and Tae Hun Song are employees of Hanmi Pharm., Co. Ltd. The authors warrant that they have no other conflict of interest regarding the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyun-Seop Bae.

Appendices

Appendix 1

HM781-36 Pharmacokinetic model (parent molecule only).

$$Ka_{i} = \theta_{1} \cdot \exp \left( {\eta_{{1,Ka_{i} }} } \right)\quad [{\text{fasting state}}]$$
$$Ka_{i} = \theta_{2} \cdot \exp \left( {\eta_{{2,Ka_{i} }} } \right)\quad [{\text{if dosed in fed state}}]$$
$${\text{CL}}/F_{i} = \theta_{2} \cdot \exp \left( {\eta_{{{\text{CL}}/F_{i} }} } \right)$$
$$V_{\text{c}} /F_{i} = \theta_{3} \cdot \exp \left( {\eta_{{Vc/F_{i} }} } \right)$$
$$Q/F_{i} = \theta_{4}$$
$$V_{\text{p}} /F_{i} = \theta_{5} \cdot \exp \left( {\eta_{{Vp/F_{i} }} } \right)$$
$$K_{i} = \left( {\frac{{{\text{CL}}/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$K_{23i} = \left( {\frac{{Q/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$K_{32i} = \left( {\frac{{Q/F_{i} }}{{V_{\text{p}} /F_{i} }}} \right)$$
$$C_{ij} = \hat{C}_{ij} \cdot \left( {1 + \varepsilon_{pij} } \right)$$

where all parameters are as defined in the text and individual PK parameters are denoted by the subscript i.

Appendix 2

Combined HM781-36 and HM781-36-M1/-M2 Pharmacokinetic parent-metabolite model.

$$Ka_{i} = \theta_{1} \cdot \exp \left( {\eta_{{1,Ka_{i} }} } \right)\quad [{\text{fasting state}}]$$
$$Ka_{i} = \theta_{2} \cdot \exp \left( {\eta_{{2,Ka_{i} }} } \right)\quad [{\text{if dosed in fed state}}]$$
$${\text{CL}}/F_{i} = \theta_{3} \cdot \exp \left( {\eta_{{{\text{CL}}/F_{i} }} } \right)$$
$$Vc/F_{i} = \theta_{4} \cdot \exp \left( {\eta_{{Vc/F_{i} }} } \right)$$
$$Q/F_{i} = \theta_{5}$$
$$V_{\text{p}} /F_{i} = \theta_{6} \cdot \exp \left( {\eta_{{Vp/F_{i} }} } \right)$$
$$K_{i} = \left( {\frac{{{\text{CL}}/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$K_{23i} = \left( {\frac{{Q/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$K_{32i} = \left( {\frac{{Q/F_{i} }}{{V_{\text{p}} /F_{i} }}} \right)$$
$$V_{4i} = V_{5i} = V_{\text{c}} /F_{i}$$
$${\text{fm}}_{1i} = \exp \left( { - \left( {\theta_{7} + \eta_{{{\text{fm}}_{1i} }} } \right)} \right)/\left( {1 + \exp \left( { - \left( {\theta_{7} + \eta_{{{\text{fm}}_{1i} }} } \right)} \right)} \right)$$
$${\text{fm}}_{2i} = 1 - {\text{fm}}_{1i}$$
$${\text{CLm}}_{1} /{\text{fm}}_{1i} = \theta_{9} \cdot \exp \left( {\eta_{{{\text{CLm}}_{1} /{\text{fm}}_{1i} }} } \right)$$
$${\text{CLm}}_{2} /{\text{fm}}_{2i} = \theta_{10} \cdot \exp \left( {\eta_{{{\text{CLm}}_{2} /{\text{fm}}_{2i} }} } \right)$$
$${\text{ERm}}_{1i} = \exp \left( { - \left( {\theta_{11} + \eta_{{{\text{ERm}}_{1i} }} } \right)} \right)/\left( {1 + \exp \left( { - \left( {\theta_{11} + \eta_{{{\text{ERm}}_{1i} }} } \right)} \right)} \right)$$
$${\text{ERm}}_{2i} = \exp \left( { - \left( {\theta_{12} + \eta_{{{\text{ERm}}_{2i} }} } \right)} \right)/\left( {1 + \exp \left( { - \left( {\theta_{12} + \eta_{{{\text{ERm}}_{2i} }} } \right)} \right)} \right)$$
$$K_{24i} = {\text{fm}}_{1i} \cdot \left( {\frac{{{\text{CL}}/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$K_{25i} = {\text{fm}}_{2i} \cdot \left( {\frac{{{\text{CL}}/F_{i} }}{{V_{\text{c}} /F_{i} }}} \right)$$
$$C1_{ij} = \hat{C}1_{ij} \cdot \left( {1 + \varepsilon 1_{pij} } \right)$$
$$C2_{ij} = \hat{C}2_{ij} \cdot \left( {1 + \varepsilon 2_{pij} } \right)$$
$$C3_{ij} = \hat{C}3_{ij} \cdot \left( {1 + \varepsilon 3_{pij} } \right)$$

where all parameters are as defined in the text, and individual PK parameters are denoted by the subscript i.

Appendix 3

See Table 4 and Figs. 4, 5 and 6.

Table 4 HM781-36 population pharmacokinetic (PK) parent-only model (n = 72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, YH., Lim, HS., Jung, JA. et al. Population pharmacokinetics of HM781-36 (poziotinib), pan-human EGF receptor (HER) inhibitor, and its two metabolites in patients with advanced solid malignancies. Cancer Chemother Pharmacol 75, 97–109 (2015). https://doi.org/10.1007/s00280-014-2621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2621-7

Keywords

Navigation