Skip to main content

Advertisement

Log in

Kinetics and apoptotic profile of circulating endothelial cells as prognostic factors for induction treatment failure in newly diagnosed acute myeloid leukemia patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The circulating endothelial cells (CEC) are proposed to be a noninvasive marker of angiogenesis. Recent data suggest that endothelial cells may enhance the survival and proliferation of leukemic blasts and mediate chemotherapy resistance in acute myeloid leukemia (AML). We analyzed CEC count by the four-color flow cytometry in AML and healthy subjects. We evaluated the kinetics of mature CEC, both resting (rCEC) and activated (aCEC), as well as progenitor (CEPC) and apoptotic CEC (CECAnnV+) in AML patients treated with standard chemotherapy and their influence on response to treatment and overall survival. We found significantly higher numbers of aCEC, rCEC, CEPC, and CECAnnV+ in AML patients than in healthy controls. The elevated CEPC and absolute blood counts in peripheral blood as well as the low CECAnnV+ number were associated with higher probability of induction treatment failure. aCEC, rCEC, CEPC, and CECAnnV+ counts determined in complete remission (CR) were significantly lower than those found at diagnosis. In those CR patients, a significant decrease in the CEC count and increase in the number of CECAnnV+ were observed already 24h after the first dose of chemotherapy. In refractory AML, the aCEC, rCEC, CEPC, and CECAnnV+ counts assessed before and after induction chemotherapy did not differ significantly, and a significant decrease in CEC count and increase in CECAnnV+ number were noted only after the last dose of chemotherapy. The number of CEC is significantly higher in AML patients than in healthy subjects and correlates with response to treatment. The evaluation of CEC kinetics and apoptotic profile may be a promising tool to select AML patients with poor response to chemotherapy who may benefit from antiangiogenic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hussong JW, Rodgers GM, Shami PJ (2000) Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 95:309–313

    PubMed  CAS  Google Scholar 

  2. Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al (2000) Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95:2637–2644

    PubMed  CAS  Google Scholar 

  3. Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in haematopoietic malignancies. Cancer Res 59:728–733

    PubMed  CAS  Google Scholar 

  4. Wierzbowska A, Robak T, Wrzesień-Kuś A, Krawczyńska A, Lech-Marańda E, Urbańska-Ryś H (2003) Circulating VEGF and its soluble receptors sVEGFR-1 and sVEGFR-2 in patients with acute leukemia. Eur Cytokine Netw 14:149–153

    PubMed  CAS  Google Scholar 

  5. Liesveld JL, Rosell KE, Lu C, Bechelli J, Phillips G, Lancet JE et al (2005) Acute myelogenous leukemia-microenvironment interactions: role of endothelial cells and proteasome inhibition. Hematology 10:483–494

    Article  PubMed  CAS  Google Scholar 

  6. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M et al (1997) Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 89:1870–1875

    PubMed  CAS  Google Scholar 

  7. Monestiroli S, Mancuso P, Burlini A, Pruneri G, Dell’Agnola C, Gobbi A et al (2001) Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res 61:4341–4344

    PubMed  CAS  Google Scholar 

  8. Mancuso P, Burlini A, Pruneri G, Goldhirsch A, Martinelli G, Bertolini F (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661

    Article  PubMed  CAS  Google Scholar 

  9. Beerepoot LV, Mehra N, Vermaat JSP, Zonnbenberg BA, Gebbink MFGB, Voest EE (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–145

    Article  PubMed  CAS  Google Scholar 

  10. Mancuso P, Coleoni M, Calleri A, Orlando L, Maisonneuve P, Pruneri G et al (2006) Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108:452–459

    Article  PubMed  CAS  Google Scholar 

  11. Wierzbowska A, Robak T, Krawczyńska A, Wrzesień-Kuś A, Pluta A, Cebula B et al (2005) Circulating endothelial cells in patients with acute myeloid leukemia. Eur J Hematol 75:492–497

    Article  Google Scholar 

  12. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Int Med 103:620–625

    PubMed  CAS  Google Scholar 

  13. Hołowiecki J, Grosicki S, Robak T, Kyrcz-Krzemień S, Giebel S, Hellman A, Skotnicki A et al (2004) Addition of cladribine to daunorubicin and cytarabine increases complete remission rate after a single course of induction treatment in acute myeloid leukemia. Multicenter, phase III study. Leukemia 18:989–997

    Article  PubMed  Google Scholar 

  14. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH et al (2003) International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. Revised recommendations of the International Working Group for Diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649

    Article  PubMed  Google Scholar 

  15. Fornas O, Garcia J, Peritz J (2000) Flow cytometry counting of CD34+ cells in whole blood. Nat Med 6:833–836

    Article  PubMed  CAS  Google Scholar 

  16. Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L et al (2004) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294

    Article  PubMed  Google Scholar 

  17. Cortelezzi A, Fracchiolla NS, Mazzeo LM, Silvestris I, Pomati M, Somalvico F et al (2005) Endothelial precursors and mature endothelial cells are increased in the peripheral blood of myelodysplastic syndromes. Leuk Lymphoma 46:1345–1351

    Article  PubMed  CAS  Google Scholar 

  18. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J et al (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49:671–680

    Article  PubMed  CAS  Google Scholar 

  19. Havemann K, Pujol BF, Adamkiewicz J (2003) In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv Exp Med Biol 522:47–57

    PubMed  CAS  Google Scholar 

  20. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lutjens P, Muller R, Havemann K (2001) Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80:99–110

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML et al (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65:287–300

    Article  PubMed  CAS  Google Scholar 

  22. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  23. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  24. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M (2002) Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16:1713–1724

    Article  PubMed  CAS  Google Scholar 

  25. Garrido SM, Appelbaum FR, Willman CL, Banker DE (2001) Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 29:448–457

    Article  PubMed  CAS  Google Scholar 

  26. Shain KH, Landowski TH, Dalton WS (2000) The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 12:557–563

    Article  PubMed  CAS  Google Scholar 

  27. Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59:728–733

    PubMed  CAS  Google Scholar 

  28. Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD (1987) The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69:1771–1776

    PubMed  CAS  Google Scholar 

  29. Griffin JD, Rambaldi A, Vellenga E, Young DC, Ostapovicz D, Cannistra SA (1987) Secretion of interleukin-1 by acute myeloblastic leukemia cells in vitro induces endothelial cells to secrete colony stimulating factors. Blood 70:1218–1221

    PubMed  CAS  Google Scholar 

  30. Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L et al (2001) Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A 98:10857–10862

    Article  PubMed  CAS  Google Scholar 

  31. Tran J, Master Z, Yu JL, Rak J, Dumont DJ, Kerbel RS (2002) A role for surviving in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A 99:4349–4354

    Article  PubMed  CAS  Google Scholar 

  32. Sweeney CJ, Miller KD, Sissons SE, Nozaki S, Heilman DK, Shen J et al (2001) The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 61:3369–3372

    PubMed  CAS  Google Scholar 

  33. Keyhani A, Jendiroba DB, Freireich EJ (2001) Angiogenesis and leukemia. Leuk Res 25:639–645

    Article  PubMed  CAS  Google Scholar 

  34. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M et al (1999) Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 94:3717–3721

    PubMed  CAS  Google Scholar 

  35. Aguayo A, Kantarjian H, Estey E, Giles F, Verstovsec S, Manshouri T et al (2002) Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 95:1923–1930

    Article  PubMed  Google Scholar 

  36. Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    PubMed  CAS  Google Scholar 

  37. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y et al (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    PubMed  CAS  Google Scholar 

  38. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  39. Shaked Y, Emmenegger U, Francia G, Chen L, Lee CR, Man S et al (2005) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported with a grant from the Medical University of Łódź [N°502-11-312]. We thank Dr. Dioniza Bielak for help in supplying blood samples from healthy blood donors and Ms. Anna Wisniewska for revision of the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Robak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wierzbowska, A., Robak, T., Krawczyńska, A. et al. Kinetics and apoptotic profile of circulating endothelial cells as prognostic factors for induction treatment failure in newly diagnosed acute myeloid leukemia patients. Ann Hematol 87, 97–106 (2008). https://doi.org/10.1007/s00277-007-0372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-007-0372-9

Keywords

Navigation