Skip to main content
Log in

Genetic polymorphisms of methylenetetrahydrofolate reductase and promoter methylation of MGMT and FHIT genes in diffuse large B cell lymphoma risk in Middle East

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Diffuse large B cell lymphoma (DLBCL) is one of the most common non-Hodgkin’s lymphoma types. Methylenetetrahydrofolate reductase (MTHFR) balances the pool of folate coenzymes in one carbon metabolism of deoxyribonucleic acid (DNA) synthesis and methylation; both are implicated in carcinogenesis of many types of cancer including lymphoma. Two common variants in the MTHFR gene (C677T and A1298C) have been associated with reduced enzyme activity, thereby making MTHFR polymorphisms a potential candidate as a cancer-predisposing factor. The O6 methylguanine DNA methyltransferase (MGMT) and fragile histidine triad (FHIT) genes are transcriptionally silenced by promoter hypermethylation in DLBCL. These genetic differences are highly race specific and have never been screened in the Saudi DLBCL patients. We conducted a hospital-based case–control study including 160 DLBCL cases and 511 Saudi control samples analyzing the MTHFR C677T and A1298C functional polymorphisms by the restriction fragment length polymorphism method and their association with MGMT and FHIT genes promoter hypermethylation. Our data demonstrated that Saudi individuals carrying MTHFR genotype 1298CC (p < 0.001) and the 1298C allele (p = 0.012) had 4.23 and 1.73-fold higher risk of developing DLBCL, respectively. Additionally, combined genotype CCCC (MTHFR 677CC + MTHFR 1298CC) was associated with 3.489-fold, and CTCC (MTHFR 677 CT + 1298CC) was related to 9.515-fold higher risk, compared with full MTHFR enzyme activity. No significant association between MTHFR variant genotypes and methylation of MGMT and FHIT genes were observed. Our findings suggested that polymorphisms of MTHFR enzyme genes might be associated with the individual susceptibility to develop DLBCL. Additionally, the results indicated that MTHFR variants were not related to MGMT or FHIT hypermethylation in DLBCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anonymous (1997) A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma: the Non-Hodgkin's Lymphoma Classification Project. Blood 89:3909–3918

  2. Bazarbashi S, De Vol E, Young S, Al-Eid H, Arteh S (2004) Cancer incidence report Saudi Arabia 1999–2000. National Cancer Registry, Saudi Arabia

    Google Scholar 

  3. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282

    Article  PubMed  CAS  Google Scholar 

  4. Hartge P, Wang SS (2004) Overview of the etiology and epidemiology of lymphoma. In: Mauch PM, Armitage JO, Coiffier B, Dalla-Favera R, Harris NL (eds) Non-Hodgkin’s lymphomas. Lippincott Williams and Wilkins, Philadelphia, pp 711–727

    Google Scholar 

  5. Chiu BC, Weisenburger DD (2003) An update of the epidemiology of non-Hodgkin’s lymphoma. Clin Lymphoma 4:161–168

    PubMed  Google Scholar 

  6. Blair A, Zahm SH (1995) Agricultural exposures and cancer. Environ Health Perspect 103:205–208

    Article  PubMed  Google Scholar 

  7. Dich J, Zahm SH, Hanberg A, Adami HO (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  PubMed  CAS  Google Scholar 

  8. O’Connor SR, Farmer PB, Lauder I (1999) Benzene and non-Hodgkin’s lymphoma. J Pathol 189:448–453

    Article  PubMed  CAS  Google Scholar 

  9. Garte S, Gaspari L, Alexandrie AK et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomark Prev 10:1239–1248

    CAS  Google Scholar 

  10. Zhu K, Levine RS, Brann EA, Gu Y, Caplan LS, Hall I, Baum MK (2001) Risk factors for non-Hodgkin’s lymphoma according to family history of haematolymphoproliferative malignancies. Int J Epidemiol 30:818–824

    Article  PubMed  CAS  Google Scholar 

  11. Chiu BC, Weisenburger DD, Zahm SH, Cantor KP, Gapstur SM, Holmes F, Burmeister LF, Blair A (2004) Agricultural pesticide use, familial cancer, and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomark Prev 13:525–531

    CAS  Google Scholar 

  12. Sekine I, Saijo N (2001) Polymorphisms of metabolizing enzymes and transporter proteins involved in the clearance of anticancer agents. Ann Oncol 12:1515–1525

    Article  PubMed  CAS  Google Scholar 

  13. Cartron G, Dacheux L, Salles G et al (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa gene. Blood 99:754–758

    Article  PubMed  Google Scholar 

  14. Park DJ, Stoehlmacher J, Zhang W, Tsao-Wei DD, Groshen S, Lenz HJ (2001) A Xeroderma pigmentosum group D gene polymorphism predicts clinical outcome to platinum-based chemotherapy in patients with advanced colorectal cancer. Cancer Res 61:8654–8658

    PubMed  CAS  Google Scholar 

  15. Relling MV, Dervieux T (1996) Pharmacogenetics and cancer therapy. Nat Rev Cancer 1:99–108

    Article  CAS  Google Scholar 

  16. Nebert DW, McKinnon RA, Puga A (1996) Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol 15:273–280

    Article  PubMed  CAS  Google Scholar 

  17. Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, Sinnett D (2002) Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 8:802–810

    PubMed  CAS  Google Scholar 

  18. Robien K, Ulrich CM (2003) 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 157:571–582, Review

    Article  PubMed  Google Scholar 

  19. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M (2002) Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 100:3832–3834

    Article  PubMed  Google Scholar 

  20. Hishida A, Matsuo K, Hamajima N, Ito H, Ogura M, Kagami Y, Taji H, Morishima Y, Emi N, Tajima K (2003) Associations between polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and susceptibility to malignant lymphoma. Haematologica 88:159–166

    PubMed  CAS  Google Scholar 

  21. Matsuo K, Suzuki R, Hamajima N et al (2001) Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 97:3205–3209

    Article  PubMed  CAS  Google Scholar 

  22. Al-Kuraya K, Narayanappa R, Siraj AK, Al-Dayel F, Ezzat A, Solh HE, Al-Jommah N, Sauter G, Simon R (2006) High frequency and strong prognostic relevance of O(6)-methylguanine DNA methyltransferase silencing in diffuse large B-cell lymphomas from the Middle East. Hum Pathol 37:742–748

    Article  PubMed  CAS  Google Scholar 

  23. Al Kuraya K, Siraj AK, Bavi P, Al-Jomah N, El-Solh H, Ezzat A, Al-Dayel F, Belgaumi A, Al-Kofide A, Sabbah R, Sheikh S, Amr S, Simon R, Sauter G (2006) High throughput tissue microarray analysis of FHIT expression in diffuse large cell B-cell lymphoma from Saudi Arabia. Mod Pathol 19:1124–1129

    PubMed  CAS  Google Scholar 

  24. Esteller M, Gaidano G, Goodman SN, Zagonel V, Capello D, Botto B, Rossi D, Gloghini A, Vitolo U, Carbone A, Baylin SB, Herman JG (2002) Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst 94:26–32

    PubMed  CAS  Google Scholar 

  25. Chen P, Yang M et al (2004) Decreased FHIT protein expression correlates with a worse prognosis in patients with diffuse large B cell lymphoma. Oncol Rep 11:349–356

    PubMed  CAS  Google Scholar 

  26. Kameoka Y, Tagawa H, Tsuzuki S, Karnan S, Ota A, Suguro M, Suzuki R, Yamaguchi M, Morishima Y, Nakamura S, Seto M (2004) Contig array CGH at 3p14.2 points to the FRA3B/FHIT common fragile region as the target gene in diffuse large B-cell lymphoma. Oncogene 23:9148–54

    Article  PubMed  CAS  Google Scholar 

  27. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, Selhub J (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611

    Article  PubMed  CAS  Google Scholar 

  28. Stern LL, Mason JB, Selhub J, Choi SW (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomark Prev 9:849–853

    CAS  Google Scholar 

  29. Toffoli G, Cecchin E (2003) Pharmacogenetics of stomach cancer. Tumori Suppl 2:S19–S22

    Google Scholar 

  30. Chiusolo P, Reddiconto G, Casorelli I et al (2002) Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol 13:1915–1918

    Article  PubMed  CAS  Google Scholar 

  31. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (2000) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 6:744–745

    Google Scholar 

  32. Bu R, Gutierrez MI, Al-Rasheed M, Belgaumi A, Bhatia K (2004) Variable drug metabolism genes in Arab population. Pharmacogenomics J 4:260–266

    Article  PubMed  CAS  Google Scholar 

  33. Toffoli G, Rossi D, Gaidano G, Cecchin E, Boiocchi M, Carbone A (2003) Methylenetetrahydrofolate reductase genotype in diffuse large B-cell lymphomas with and without hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase. Int J Biol Markers 18:218–221

    PubMed  CAS  Google Scholar 

  34. Clarizia AD, Bastos-Rodrigues L, Pena HB, Anacleto C, Rossi B, Soares FA, Lopes A, Rocha JC, Caballero O, Camargo A, Simpson AJ, Pena SD (2006) Relationship of the methylenetetrahydrofolate reductase C677T polymorphism with microsatellite instability and promoter hypermethylation in sporadic colorectal cancer. Genet Mol Res 5(2):315–322

    PubMed  CAS  Google Scholar 

  35. Matsuo K, Hamajima N, Suzuki R, Ogura M, Kagami Y, Taji H, Yasue T, Mueller NE, Nakamura S, Seto M, Morishima Y, Tajima K (2004) Methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms and reduced risk of malignant lymphoma. Am J Hematol 77:351–357

    Article  PubMed  CAS  Google Scholar 

  36. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  PubMed  CAS  Google Scholar 

  37. Skibola CF, Forrest MS, Coppede F, Agana L, Hubbard A, Smith MT, Bracci PM, Holly EA (2004) Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood 104:2155–2162

    Article  PubMed  CAS  Google Scholar 

  38. Lightfoot TJ, Skibola CF, Willett EV, Skibola DR, Allan JM, Coppede F, Adamson PJ, Morgan GJ, Roman E, Smith MT (2005) Risk of non-Hodgkin lymphoma associated with polymorphisms in folate-metabolizing genes. Cancer Epidemiol Biomark Prev 14:2999–3003

    Article  CAS  Google Scholar 

  39. Habib EE, Aziz M, Kotb M (2005) Genetic polymorphism of folate and methionine metabolizing enzymes and their susceptibility to malignant lymphoma. J Egypt Natl Cancer Inst 17:184–192

    Google Scholar 

  40. Lincz LF, Scorgie FE, Kerridge I, Potts R, Spencer A, Enno A (2003) Methionine synthase genetic polymorphism MS A2756G alters susceptibility to follicular but not diffuse large B-cell non-Hodgkin's lymphoma or multiple myeloma. Br J Haematol 120:1051–1054

    Article  PubMed  CAS  Google Scholar 

  41. Lim U, Wang SS, Hartge P, Cozen W, Kelemen LE, Chanock S, Davis S, Blair A, Schenk M, Rothman N, Lan Q (2006) Gene-nutrient interactions among determinants of folate and one-carbon metabolism on the risk of non-Hodgkin lymphoma: NCI-SEER Case–Control Study. Blood 109:3050–3059

    Article  CAS  Google Scholar 

  42. Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG, Ludwig ML (1999) The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 6:359–365

    Article  PubMed  CAS  Google Scholar 

  43. Warzocha K, Ribeiro P, Bienvenu J, Roy P, Charlot C, Rigal D, Coiffier B, Salles G (1998) Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin's lymphoma outcome. Blood 91:3574–3581

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ thanks to Dr. Shakaib Siddiqui for providing clinical information and Azadali Moorji for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawla Al-Kuraya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siraj, A.K., Ibrahim, M., Al-Rasheed, M. et al. Genetic polymorphisms of methylenetetrahydrofolate reductase and promoter methylation of MGMT and FHIT genes in diffuse large B cell lymphoma risk in Middle East. Ann Hematol 86, 887–895 (2007). https://doi.org/10.1007/s00277-007-0350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-007-0350-2

Keywords

Navigation