Skip to main content

Advertisement

Log in

Long-Term Effects of Fertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China: RothC Model Simulations

  • Research
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. J. Balesdent M. Balabane (1996) ArticleTitleMajor contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biology and Biochemistry 28 1261–1263 Occurrence Handle10.1016/0038-0717(96)00112-5 Occurrence Handle1:CAS:528:DyaK28XmvFGnsLk%3D

    Article  CAS  Google Scholar 

  2. G. A. Buyanovsky G. H. Wagner (1986) ArticleTitlePost-harvest residue input to cropland. Plant & Soil 93 57–65

    Google Scholar 

  3. E. Bremer H. H. Janzen A. M. Johnson (1994) ArticleTitleSensitivity of total, lght fraction and mineralizable organic matter to management practices in a Lethbridge soil. Canadian Journal of Soil Science 74 131–138 Occurrence Handle1:CAS:528:DyaK2cXltlejtrs%3D

    CAS  Google Scholar 

  4. C. A. Campbell V. O. Biederbeck R .P. Zentner G. P. Lafond (1991) ArticleTitleEffect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chenozem. Canadian Journal of Soil Science 71 363–376 Occurrence Handle1:CAS:528:DyaK38Xlslym

    CAS  Google Scholar 

  5. C. A. Campbell R. P. McConkey F. B. Zentner F. B. Dyck . Selles D. Curtin (1995) ArticleTitleCarbon sequestration in brown Chernozem as affected by tillage and rotation. Canadian Journal of Soil Science 75 449–458 Occurrence Handle1:CAS:528:DyaK28XhslKlsLY%3D

    CAS  Google Scholar 

  6. K. Coleman D. S. Jenkinson (1995) RothC-26.3: a model for the turnover of carbon in soil: model description and user’s guide. Lawes Agricultural Trust Harpenden, UK 32

    Google Scholar 

  7. K. Coleman D. S. Jenkinson G. J. Crocker P. R. Grace J. Klír M. Mörschens P. R. Poulton D. D. Richter (1997) ArticleTitleSimulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81 29–44 Occurrence Handle10.1016/S0016-7061(97)00079-7

    Article  Google Scholar 

  8. E. A. Davidson I. L. Ackerman (1993) ArticleTitleChanges in soil carbon inventories following cultivation of previously untilled soil. Biogeochemistry 20 161–193 Occurrence Handle1:CAS:528:DyaK2cXhtlejsLc%3D

    CAS  Google Scholar 

  9. A. S. Donigian Jr. A. S. R. Patwardhan V. Chinnaswamy T. O. Barnwell (1998) Modeling soil carbon and agricultural practices in the central U.S.: an update of preliminary study results. Pages 499–518 R. Lal J. M. R. Kimble F. Follett B. A. Steward (Eds) Soil processes and the carbon cycle. CRC Press Boca Raton, Florida

    Google Scholar 

  10. R. F. Grant (1997) ArticleTitleChanges in soil organic matter under different tillage and rotation: Mathematical modeling in ecosys. Soil Science Society America Journal 61 1159–1174 Occurrence Handle1:CAS:528:DyaK2sXlt1Shtr0%3D

    CAS  Google Scholar 

  11. E. G. Gregorich B. H. Ellert C. F. Drury B. C. Liang (1996) ArticleTitleFertilization effects on soil organic matter turnover and corn residues C storage. Soil Science Society America Journal 60 472–476 Occurrence Handle1:CAS:528:DyaK28Xitleqs7g%3D

    CAS  Google Scholar 

  12. InstitutionalAuthorNameHLMB-SSO(Heilongjiang Land Management Bureau and Soil Survey Office) (1992) Soils of Heilongjian. Agricultural Science Press Beijing 864 Occurrence Handle1597042

    PubMed  Google Scholar 

  13. D. S. Jenkinson P. B. S. hart J. H. Rayner L. C. Parry (1987) ArticleTitleModeling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin 15 1–8

    Google Scholar 

  14. InstitutionalAuthorNameJGSSF (Jilin General Station of Soil and Fertilizer) (1998) Soils of Jilin. Agricultural Science Press Beijing 647 Occurrence Handle9736316

    PubMed  Google Scholar 

  15. M. Nyborg E. D. Solberg S. S. Malhi R. C. Izaurralde (1995) Fertilizer N, crop residue and tillage alter soil C and N content in a decade. Pages 93–99 R. Lal J. M. Kimble R. F. Follett B. A. Steward (Eds) Soil management and greenhouse effect Lewis Publ. Boca Raton, Florida

    Google Scholar 

  16. W. J. Parton J. W. B. Steward C. V. Cole (1988) ArticleTitleDynamics of C, N, P, and S in grassland soils: a model. Biogeochemistry 5 109–131 Occurrence Handle1:CAS:528:DyaL1cXhvVGlu7w%3D

    CAS  Google Scholar 

  17. K. Paustian E. T. Elliott K. Killian (1998) Modeling soil carbon in relation to management and climate change in some agroecosystems in central North America. Pages 459–471 R. Lal J. M. Kimble R. F. Follett B. A. Steward (Eds) Soil processes and the carbon cycle. CRC Press Boca Raton, Florida

    Google Scholar 

  18. D. C. Reicosky W. D. Kemper G. W. Langdale C. L. Douglas Jr. P. E. Rasmussen (1995) ArticleTitleSoil organic matter changes resulting from tillage and biomass production. Journal of Soil Water Conservation 50 253–261 Occurrence Handle10.1023/A:1005347017157 Occurrence Handle1:CAS:528:DyaK1cXmslWgu7k%3D

    Article  CAS  Google Scholar 

  19. P. Smith J. U. Smith D. S. Powlson W. B. McGill J. R. M. Arah O. G. Chertov K. Coleman U. Franko S. Frolking D. S. Jenkinson L. S. Jensen R. H. Kelly H. Klein-Gunnewiek A. Komarov C. Li J. A. E. Molina T. Mueller W. J. Parton J. H. M. Thornley A. P. Whitmore (1997) ArticleTitleA comparison of the performance of nine soil organic matter models using seven long-term experimental datasets. Geoderma 81 153–225 Occurrence Handle10.1016/S0016-7061(97)00087-6

    Article  Google Scholar 

  20. T. G. Sommerfeld C. Chang T. Entz (1988) ArticleTitleLong-term annual manure application increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Science Society America Journal 52 1668–1672

    Google Scholar 

  21. M. M. Wander X. M. Yang (2000) ArticleTitleInfluence of tillage on the dynamics of loose and occluded-particulate and humified organic matter fractions. Soil Biology And Biochemistry 32 1151–1160 Occurrence Handle10.1016/S0038-0717(00)00031-6 Occurrence Handle1:CAS:528:DC%2BD3cXlslyhsrw%3D

    Article  CAS  Google Scholar 

  22. X. M. Yang B. D. Kay (2001) ArticleTitleRotation and Tillage Effects on Soil Org Sequestration in a Typic Hapludalf in Southern Ontario. Soil & Till Research 59 107–114

    Google Scholar 

  23. X. M. Yang M. M. Wander (1999) ArticleTitleTillage effects on soil organic carbon distribution and estimation of C storage in a silty loam soil in Illinois. Soil Tillage Research 52 1–9 Occurrence Handle10.1016/S0167-1987(99)00051-3

    Article  Google Scholar 

  24. Zhu, P., J. Ren, L. C. Wang, X. M. Yang, C. F. Drury, C. S. Tan, W. D. Reynolds, C. J. Hu, P. Chang, G. H. Jun. 2003. Long-term effects of fertilization and weather on corn yields in a clay loam soil in Northeast China (in press).

Download references

Acknowledgements

Funding for this study was partially provided by the National Natural Science Foundation (40271108) and Chinese Academy of Sciences (K09Z3). We thank Mr. H. D. Sun for help and advice in setting up and running the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.M. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Zhang, X., Fang, H. et al. Long-Term Effects of Fertilization on Soil Organic Carbon Changes in Continuous Corn of Northeast China: RothC Model Simulations . Environmental Management 32, 459–465 (2003). https://doi.org/10.1007/s00267-003-0082-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-0082-6

Keywords

Navigation